Monday, Ju	ly 8
8:30 - 8:45	Opening
Session 1 : Sola	r dynamo as a driver of space climate
08:45 - 09:25	Manfred Schüssler (Invited review), Max Planck Institute for Solar System Research,
	Germany
	The solar dynamo: changing views
09:25 - 09:55	Hideyuki Hotta (Invited), Osaka University, Japan
	Solar deep convection zone to surface
09:55 - 10:10	Youhei Masada, Aichi University of Education, Japan
	Mean-field modeling of large-scale dynamo in solar-like strongly-stratified convection -
	the Rossby number dependence
10:10 - 10:50	Antoine Strugarek (Invited review), CEA Saclay-Dap/AIM, France
	Recent progress in MHD simulations of solar convection and dynamo
10.50 11.00	action
10:50 - 11:20	Jörn Warnecke (Invited), Max Planck Institute for Solar System Research, Germany
11.00 11.40	Modelling solar and stellar activity driven by turbulent dynamo effects
11:20 - 11:40	
<u>Session 2 : Sola</u>	<u>r photosphere 181/881</u>
11:40 - 12:20	Germany
	Long-term variability of solar irradiance
12:20 - 12:35	Greg Kopp, LASP/University of Colorado, USA
	An Historical TSI Reconstruction Based on Reevaluations of the TSI Composite and
	Sunspot Records
12:35 - 12:50	Thierry Dudok de Wit, University of Orléans, France
	<i>New reconstruction of the solar UV flux since 1950 from observations</i>
12:50 - 13:05	Luc Damé, LATMOS/IPSL/CNRS/UVSQ, France
	New solar spectrum SOLAR-ISS2 from 400 nm up to 5000 nm at very high resolution
	(better than 0.01 nm)
13:05 - 14:30	Lunch
14:30 - 15:10	Thomas Woods (Invited review), LASP/University of Colorado, USA
	Solar Irradiance Variability Observations during Solar Cycles 21 to 24
Session 3 : Sola	<u>r corona, solar wind and heliosphere</u>
15:10 - 15:50	Gordon Petrie (Invited review), National Solar Observatory, USA
	Cycle 24 and Longer-term Evolution of the Solar Photospheric and Coronal Magnetic
15.50 16.15	Field
15:50 - 10:15	Collee Dreak
10:15 - 10:30	The Direls Medel of the Surle Magnetic Field
16.20 17.10	Alaxia D. Davilland (Invited ravious), IDAD CNDS, France
10.30 - 17.10	Evolution the slow solar wind during a solar avala
17.10 17.25	Olga V. Khabarova, IZMIRAN/Institute of terrestrial magnetism. Russia
17.10 - 17.23	Polar conic current sheets Characteristics of the newfound objects in the heliosphere and
	in the solar atmosphere
17.25 - 18.00	Poster session
18.00	Welcome recention and noster viewing
10.00	recome reception and poster recting

Tuesday, July 9

Session 4 : Long-term solar activity

08:30 - 09:10	Alexei Pevtsov (Invited review), National Solar Observatory, USA
	Long-term studies of photospheric magnetic fields on the Sun
09:10-09:25	Eddie Ross, University of Birmingham, UK
	Solar cycle measurements of lifetimes of active and ephemeral region flux
09:25 - 09:40	Theodosios Chatzistergos, INAF OAR, Italy
	Composite of plage areas over the entire 20th century
09:40 - 10:10	Andrés Muñoz-Jaramillo (Invited), Southwest Research Institute, USA
	How Hemispheric Polar Field Reversal Sets the Timing and Shape of the Solar Cycle
10:10 - 10:25	Laure Lefevre, Royal Observatory of Belgium
	Advanced statistics to model the Sunspot Number series
10:25 - 10:40	Leif Svalgaard, Stanford University
	Nine Millennia of Multimessenger Solar Activity
10:40 - 11:05	Coffee break
11:05 - 11:45	Nat Gopalswamy (Invited review), NASA Goddard Space Flight Center, USA
	Long-term Variability of Solar Eruptive Events
11:45 - 12:00	Ilya Usoskin, University of Oulu, Finland
	Extreme Solar Particle Storms: Occurrence Probability and Implications
12:00 - 12:30	Ken Tapping (Invited), National Research Council, Canada
	Solar Radio Monitoring in Canada F10.7, Past, Present and Future
12:30 - 13:00	Hisashi Hayakawa (Invited), Osaka University, Japan
	Historical Candidate Auroras in Comparison with Auroral Reports during Known
	Extreme Events
13:00	Excursions
18:00	Dinner

Wednesday, July 10

08:30 - 09:10	W. Dean Pesnell (Invited review), NASA Goddard Space Flight Center, USA
	Predictions of Solar Cycle 24, Hindsight is 20/20
09:10-09:40	Lisa Upton (Invited), Space Systems Research Corporation, USA
	Solar cycle 25 predictions
09:40 - 10:10	Jie Jiang (Invited), Belhang University, China
	Predictability of the solar cycle and its application into the prediction of cycle 25
10:10 - 10:40	Mausumi Dikpati (Invited), NCAR, High Altitude Observatory, USA
	Advances in model-based predictions of decadal and "seasonal" solar activity
10:40 - 11:00	Coffee break
11:00 - 11:40	Kristof Petrovay (Invited review), Eötvös Loránd University, Hungary
	Solar cycle prediction on your fingers (and toes)
11:40 – 11:55	Melinda Nagy, Eötvös Loránd University, Hungary
	Challenges of Solar Cycle Prediction Introduced by 'Rogue' Active Region Emergences
11:55 – 12:25	Anthony R. Yeates (Invited), Durham University, UK
	How many active regions are needed to predict the solar dipole moment?
12:25 - 12:40	Alexandre Lemerle, Collège Bois-de-Boulogne, Canada
	Solar cycle forecasting, using a data-driven 2×2D Babcock-Leighton solar dynamo model
12:40 - 14:00	Lunch
Session 6 : Data	analysis methods
14:00 - 14:30	Jay R. Johnson (Invited), Andrews University, USA
	An information-theoretical approach to complex dynamics: solar flares and geomagnetic
14.20 14.45	substorms
14:30 - 14:45	Simon Wing, Johns Hopkins University, USA
Service 7 . Sala	Information theoretic approach to discovering causalities in the solar cycle
Session 7 : Sola	Information theoretic approach to discovering causalities in the solar cycle <u>r wind-Magnetosphere-Ionosphere interaction</u> Loopnia A. Doglia (Invited review). National and Konodistrian University of Athana
<u>Session 7 : Sola</u> 14:45 – 15:15	Information theoretic approach to discovering causalities in the solar cycle <u>r wind-Magnetosphere-Ionosphere interaction</u> Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece
<u>Session 7 : Sola</u> 14:45 – 15:15	Information theoretic approach to discovering causalities in the solar cycle <u>r wind-Magnetosphere-Ionosphere interaction</u> Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO)
Session 7 : Sola 14:45 - 15:15	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula University of Oulu Finland
<u>Session 7 : Sola</u> 14:45 - 15:15 15:15 - 15:30	Information theoretic approach to discovering causalities in the solar cycle <u>r wind-Magnetosphere-Ionosphere interaction</u> Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum:
<u>Session 7 : Sola</u> 14:45 – 15:15 15:15 – 15:30	Information theoretic approach to discovering causalities in the solar cycle <u>r wind-Magnetosphere-Ionosphere interaction</u> Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10	Information theoretic approach to discovering causalities in the solar cycle <u>r wind-Magnetosphere-Ionosphere interaction</u> Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15 17:15 - 17:45	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss Aude Chambodut (Invited), EOST (CNRS/University of Strasbourg), France
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15 17:15 - 17:45	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss Aude Chambodut (Invited), EOST (CNRS/University of Strasbourg), France Title to be determined
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15 17:15 - 17:45 17:45 - 18:00	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss Aude Chambodut (Invited), EOST (CNRS/University of Strasbourg), France Title to be determined Lauri Holappa, University of Oulu, Finland
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15 17:15 - 17:45 17:45 - 18:00	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss Aude Chambodut (Invited), EOST (CNRS/University of Strasbourg), France Title to be determined Lauri Holappa, University of Oulu, Finland Explicit IMF By-dependence in geomagnetic activity
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15 17:15 - 17:45 17:45 - 18:00 18:00 - 18:15	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss Aude Chambodut (Invited), EOST (CNRS/University of Strasbourg), France Title to be determined Lauri Holappa, University of Oulu, Finland Explicit IMF By-dependence in geomagnetic activity Anton S. Savostianov, NRU Higher School of Economics, Russia
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15 17:15 - 17:45 17:45 - 18:00 18:00 - 18:15	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss Aude Chambodut (Invited), EOST (CNRS/University of Strasbourg), France Title to be determined Lauri Holappa, University of Oulu, Finland Explicit IMF By-dependence in geomagnetic activity Anton S. Savostianov, NRU Higher School of Economics, Russia Long-term Variation of the Coupling between Solar Proxies: Coupled Oscillators
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15 17:15 - 17:45 17:45 - 18:00 18:00 - 18:15	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss Aude Chambodut (Invited), EOST (CNRS/University of Strasbourg), France Title to be determined Lauri Holappa, University of Oulu, Finland Explicit IMF By-dependence in geomagnetic activity Anton S. Savostianov, NRU Higher School of Economics, Russia Long-term Variation of the Coupling between Solar Proxies: Coupled Oscillators Approach
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15 17:15 - 17:45 17:45 - 18:00 18:00 - 18:15 Session 8 : Sola	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss Aude Chambodut (Invited), EOST (CNRS/University of Strasbourg), France Title to be determined Lauri Holappa, University of Oulu, Finland Explicit IMF By-dependence in geomagnetic activity Anton S. Savostianov, NRU Higher School of Economics, Russia Long-term Variation of the Coupling between Solar Proxies: Coupled Oscillators Approach r influence on atmosphere and climate
Session 7 : Sola 14:45 - 15:15 15:15 - 15:30 15:30 - 16:10 16:10 - 16:35 16:35 - 17:15 17:15 - 17:45 17:45 - 18:00 18:00 - 18:15 Session 8 : Sola 18:15 - 18:30	Information theoretic approach to discovering causalities in the solar cycle r wind-Magnetosphere-Ionosphere interaction Ioannis A. Daglis (Invited review), National and Kapodistrian University of Athens, Greece Predictability of the variable Solar-Terrestrial Coupling (PRESTO) Kalevi Mursula, University of Oulu, Finland Geomagnetic activity and geomagnetic storms throughout the Grand Modern Maximum: Centennial history of geo-effective solar variability Antti A. Pulkkinen (Invited review), NASA Goddard Space Flight Center, USA Space weather impacts and predictions: relevant spatial and temporal scales Coffee break Craig Rodger (Invited review), University of Otago, New Zealand Towards a better understanding of long term drivers of radiation belt electron acceleration and loss Aude Chambodut (Invited), EOST (CNRS/University of Strasbourg), France Title to be determined Lauri Holappa, University of Oulu, Finland Explicit IMF By-dependence in geomagnetic activity Anton S. Savostianov, NRU Higher School of Economics, Russia Long-term Variation of the Coupling between Solar Proxies: Coupled Oscillators Approach r influence on atmosphere and climate Alexander Ruzmaikin, Jet Propulsion Laboratory, USA

July 8-11, 2019 – Canton Orford, Québec, Canada

Thursday.	July	11
	U MALY	

<u>Session 8 : Solar influence on atmosphere and climate (continued)</u>		
08:30 - 09:00	Brian A. Tinsley (Invited), University of Texas at Dallas, USA	
	Solar wind influences on the ionosphere-earth current density and its influence on clouds	
09:00 - 09:30	Bruce T. Tsurutani (Invited), Jet Propulsion Laboratory, USA	
	A New Mechanism to Explain the Wilcox et al. (1973) Effect	
09:30 - 10:10	Miriam Sinnhuber (Invited review), Karlsruhe Institute of Technology, Germany	
	Direct and indirect impacts of energetic particle precipitation into the atmosphere	
10:10 - 10:35	Coffee break	
10:35 - 11:15	Hilde Nesse Tyssøy (Invited review), Birkeland Centre for Space Science, Norway	
	A review on energetic particle fluxes and their parameterization for climate research	
11:15 - 11:30	Timo Asikainen, University of Oulu, Finland	
	Effect of energetic particle precipitation on atmospheric dynamics and climate variations	
11:30 - 12:00	Paul Prikryl (Invited), University of New Brunswick, Canada	
	Solar wind imprint on gravity waves and atmospheric circulation	
12:00 - 12:30	Linda Hunt (Invited), SSAI/NASA Langley Research Center, USA	
	Infrared Radiation in the Thermosphere from 1947 to 2019	
12:30 - 13:00	Alexander Ruzmaikin, Jet Propulsion Laboratory, USA	
	Closing	