

Atmospheric Characterization of the Temperate Planet LHS 1140 b with JWST/NIRISS

Is LHS 1140 b a Mini-Neptune or a Water World?

Charles Cadieux | CRAQ Annual Meeting | 8 May 2024

Context: The LHS 1140 System

Two-planet transiting system around an old (> 5 Gyr) and relatively inactive (P_{rot} = 131 d) M4.5 dwarf:

- **LHS 1140 b**, a **temperate** 1.73 R_{\oplus} planet with ambiguous composition (H₂O-rich?, H₂-rich?)
- LHS 1140 c, an inner 1.27 R_a rocky super-Earth

Revised Mass and Radius

Interior Scenarios for LHS 1140 b

Cadieux et al. 2024

Interior Scenarios for LHS 1140 b

Work by M. Plotnykov, C. Cherubim; Cadieux et al. 2024

3D Global Climate Models

- For the water world case, the planet could be in a **snowball** configuration with:
 - Patch of liquid water whose size depends on CO₂ concentration
 - $\circ~~{\rm H_2O}$ and ${\rm CO_2}$ clouds

Work by M. Turbet, B. Charnay; Cadieux et al. 2024

LHS 1140 b: A Mini-Neptune or a Water World?

LHS 1140 b: A Mini-Neptune or a Water World?

Transit spectroscopy can discriminate the two scenarios*

LHS 1140 b: A Mini-Neptune or a Water World?

Transit spectroscopy can discriminate the two scenarios*

*provided that stellar contamination can be properly treated

The Transit Light Source (TLS) Effect

Ghost atmospheric signal induced by stellar activity

Credit: Olivia Lim

Transit Spectroscopy with HST/WFC3

A combination of **unocculted** spots (32%) and faculae (67%) could also explain the data

Tentative detection of H₂O near 1.4 μ m (~100 ppm) in a hydrogen-dominated atmosphere (μ ~ 2.3)

Diamond-Lowe+2020; Edwards+2021

Edwards+2021

Enters JWST

- LHS 1140 has limited visibility (only 4 observable transits per year)
- Cycle 1 NIRSpec (1.7–5.2 µm) program GO2334 (PI: Damiano & Hu) with 2 transits in July 2023
- We obtained 2 transits in Dec. 2023 as part of program DD6543 (PI: Cadieux & Doyon)
- NIRISS/SOSS (0.6–2.8 µm) to:
 - Repeat the HST observations
 - Characterize levels of stellar activity
 - Confirm/reject the mini-Neptune scenario for LHS 1140 b

Cadieux et al. in prep.

A double transit of LHS 1140 c!

Cadieux et al. in prep.

Free Chemistry Atmospheric Retrieval

Atmospheric abundances

- Evidence (~2 σ) of **unocculted faculae**
- No molecular absorption (upper limits inferred)
- A featureless spectrum is preferred over the mini-Neptune prediction (>10σ)

Work by R. MacDonald, O. Lim; Cadieux et al. in prep.

~1% for K2-18 b (Madhusudhan+2023)

What's next? ... More data!

Transit spectroscopy (NIRISS+NIRSpec)

Eclipse photometry (MIRI)

~12 visits (3 years) needed to constrain CO_2

- 15 microns: 1 year to rule out the airless case
- 21 microns: 3 years to detect a CO₂-dominated atmosphere

Figure by S. Salhi; Cadieux et al. in prep.

Summary & Conclusion

- The **JWST/NIRISS** transmission spectrum of LHS 1140 b reveal:
- LHS 1140 b *is not* a lower-mass version of K2-18 b; the spectrum is incompatible (>10σ) with the mini-Neptune scenario
- Evidence (2σ) of TLS from **unocculted faculae**, even for this quiet star
- LHS 1140 b is a strong water world candidate, probably the best target for inferring surface liquid water through atmospheric detection of CO,
- Transmission+eclipse data *urgently* needed to constrain an atmosphere

Merci!

