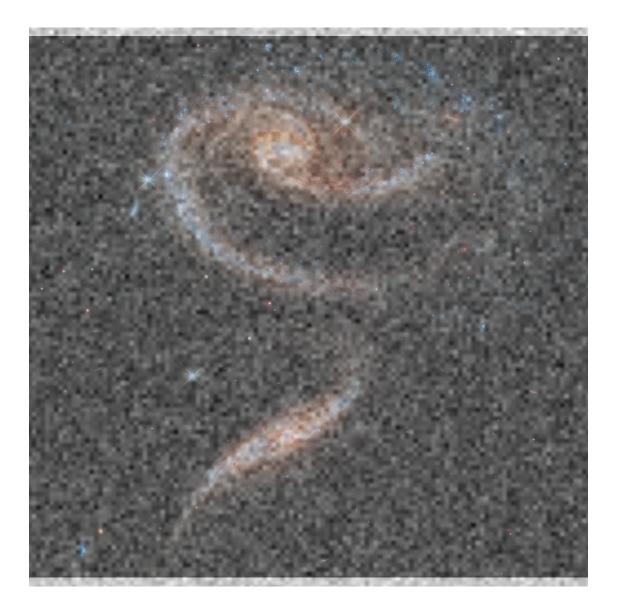
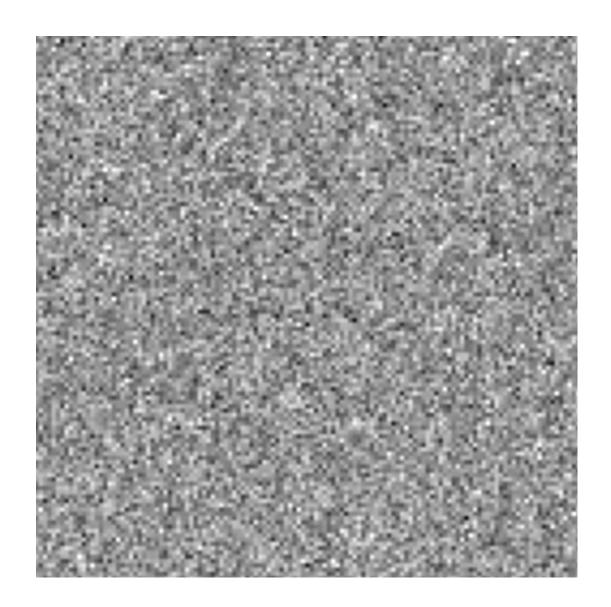
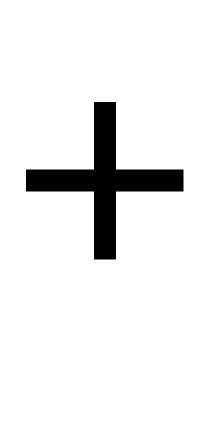
Overcoming inference challenges using score generative models

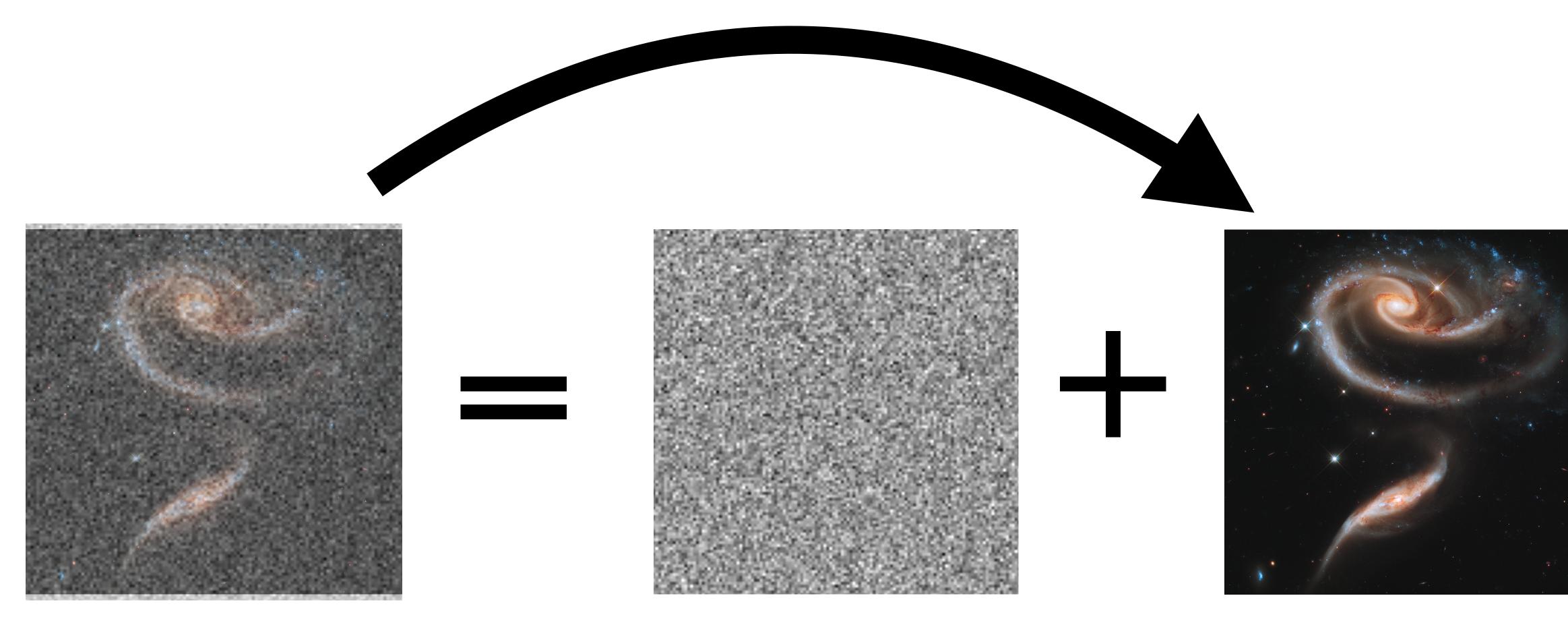
Ronan Legin

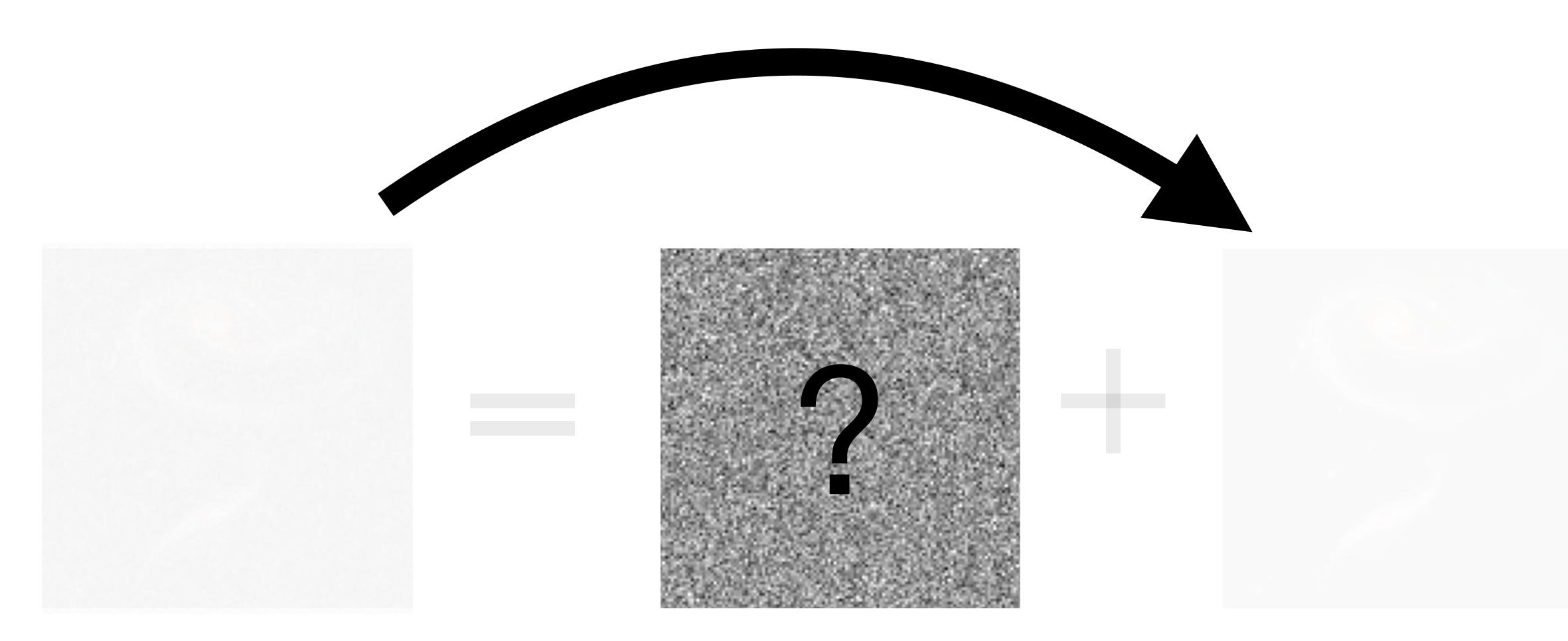
Université m de Montréal



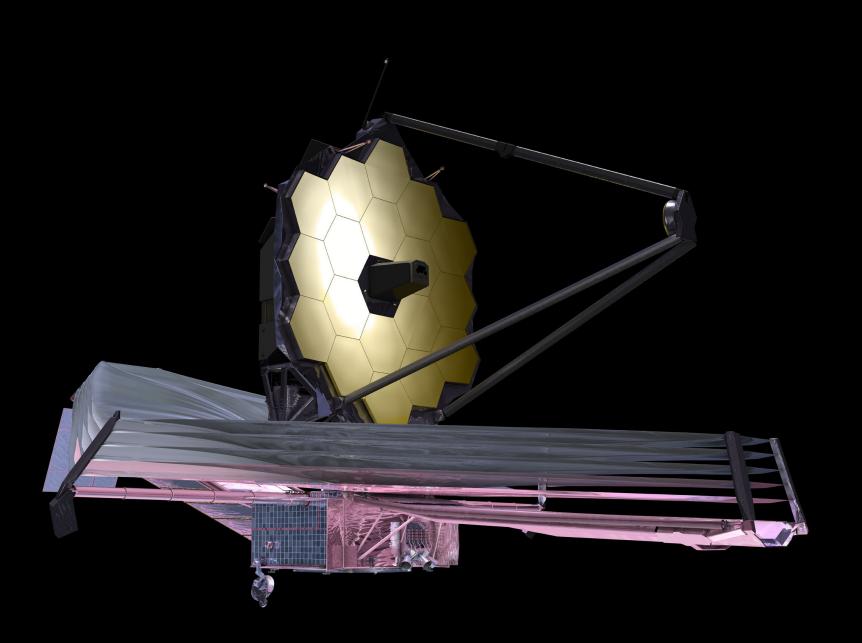






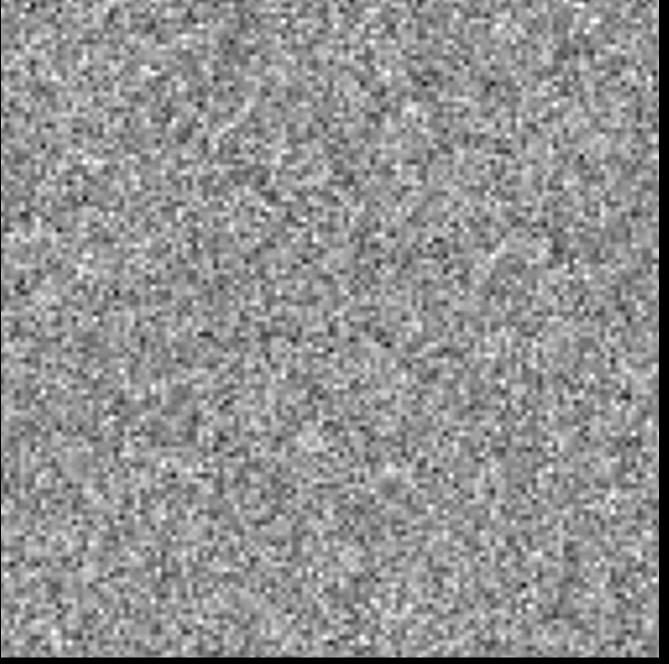


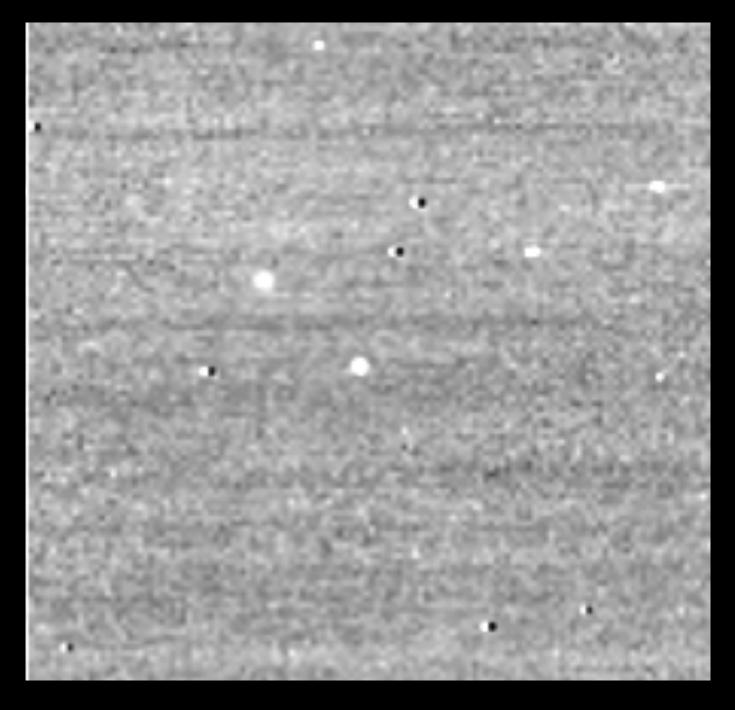
Examples

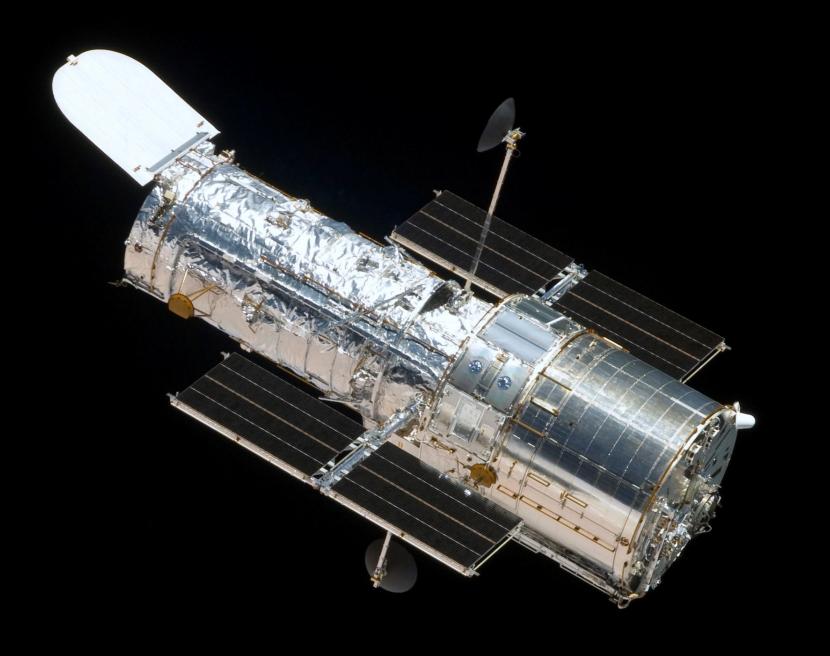


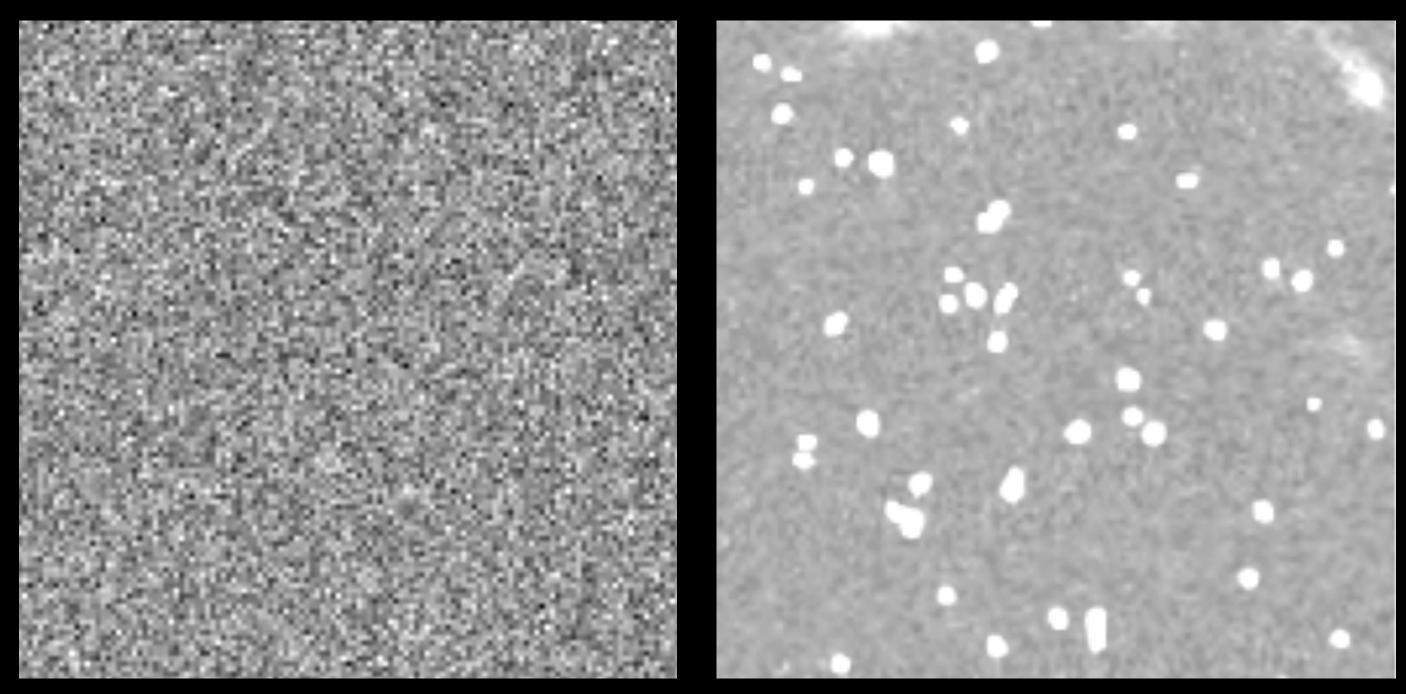
Gaussian Noise

JWST Noise





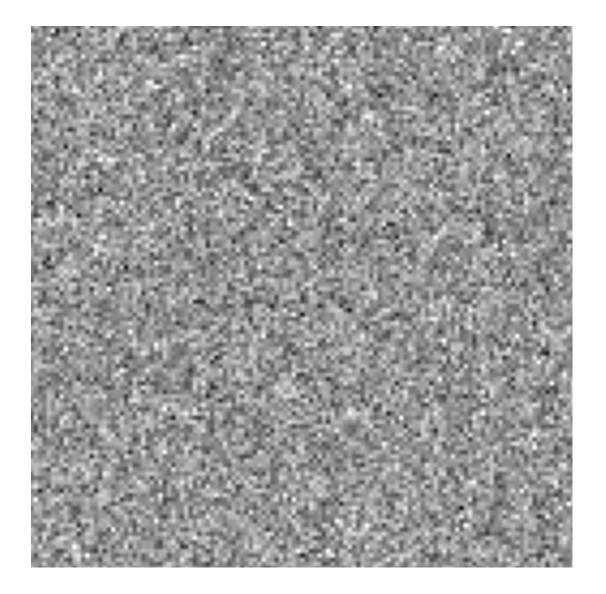




Gaussian Noise

HST Noise

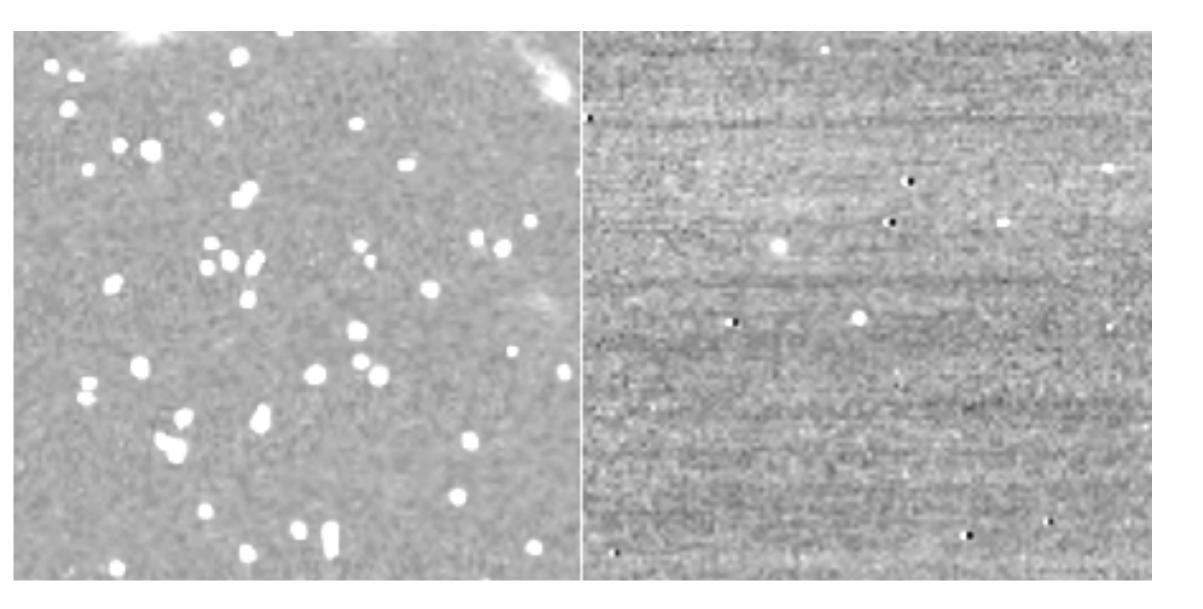
Gaussian Noise



$$P(d \mid \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp -\frac{1}{2} \left(\frac{d - \mu(\theta)}{\sigma}\right)^2$$

HST noise

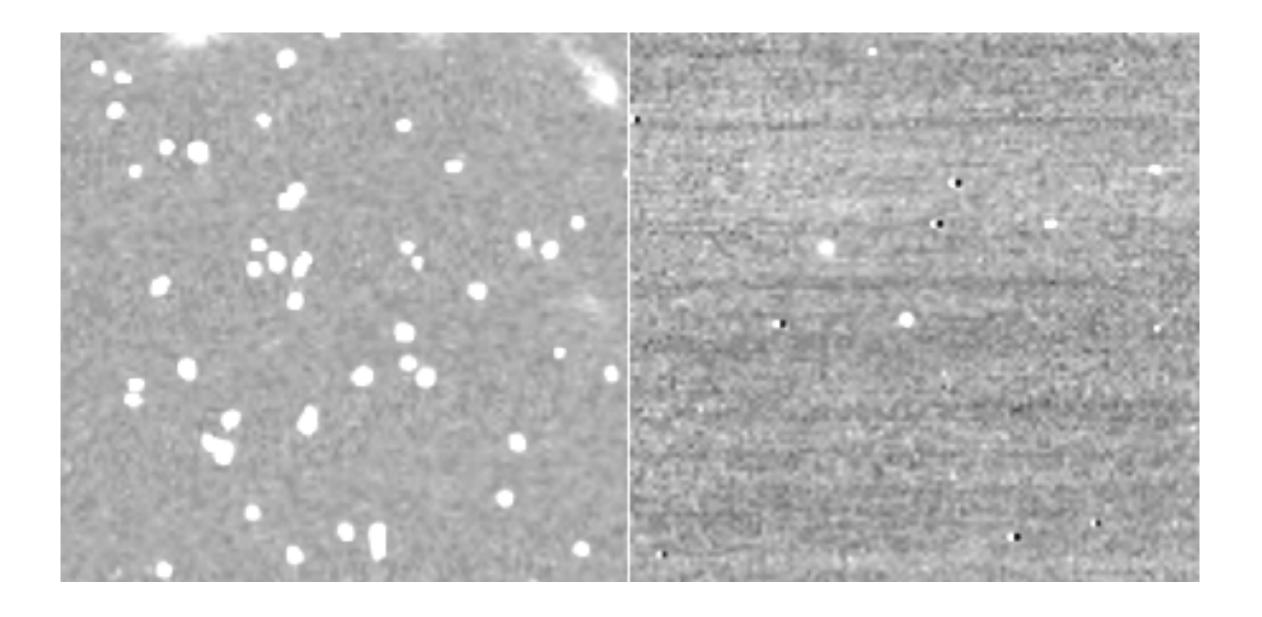
JWST noise

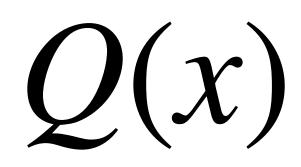


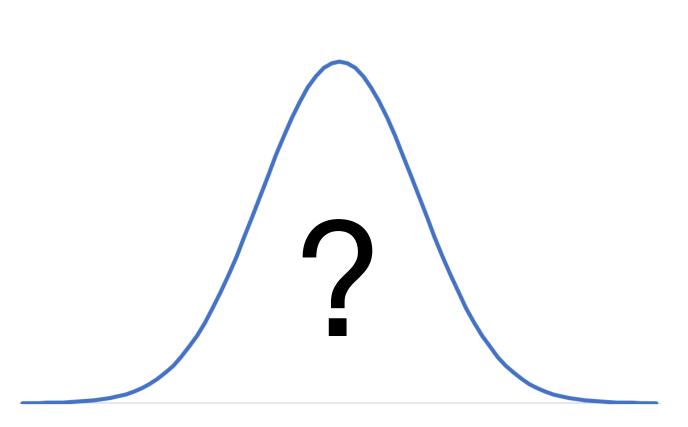
?

?

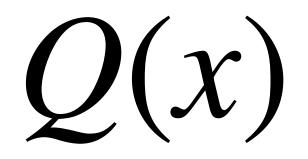
Learn Noise Distribution





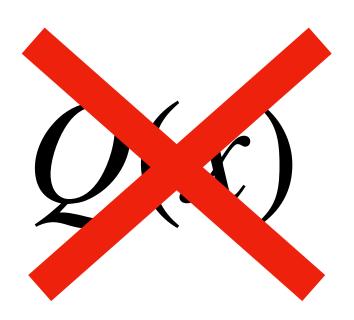


Alternative?



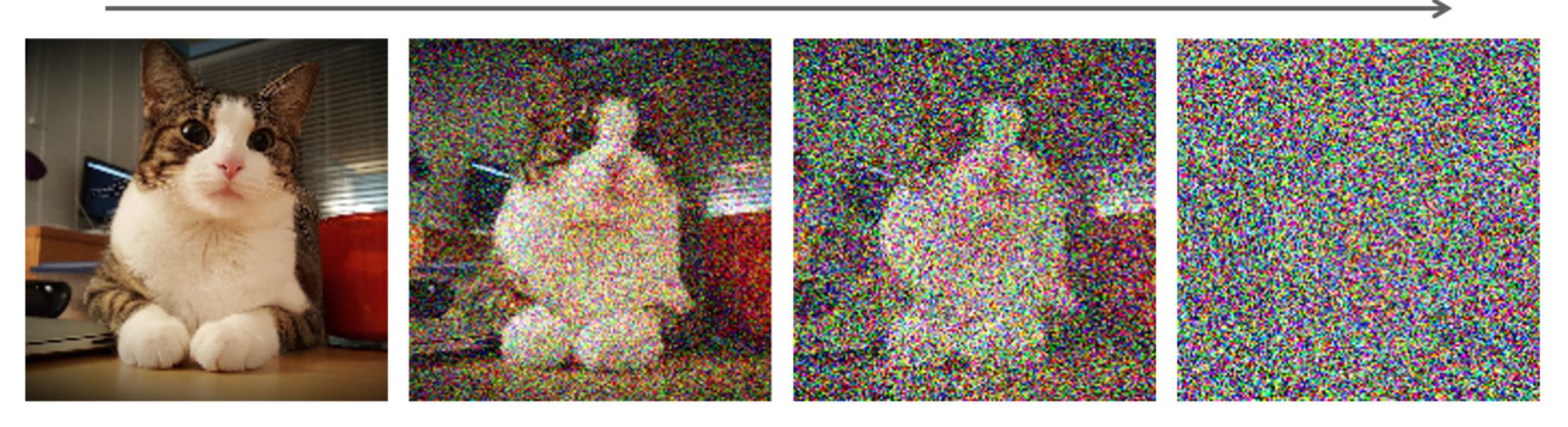
Alternative?

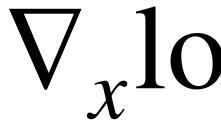
• Instead learn $\nabla_x \log Q(x)$.



$\nabla_x \log Q(x)$

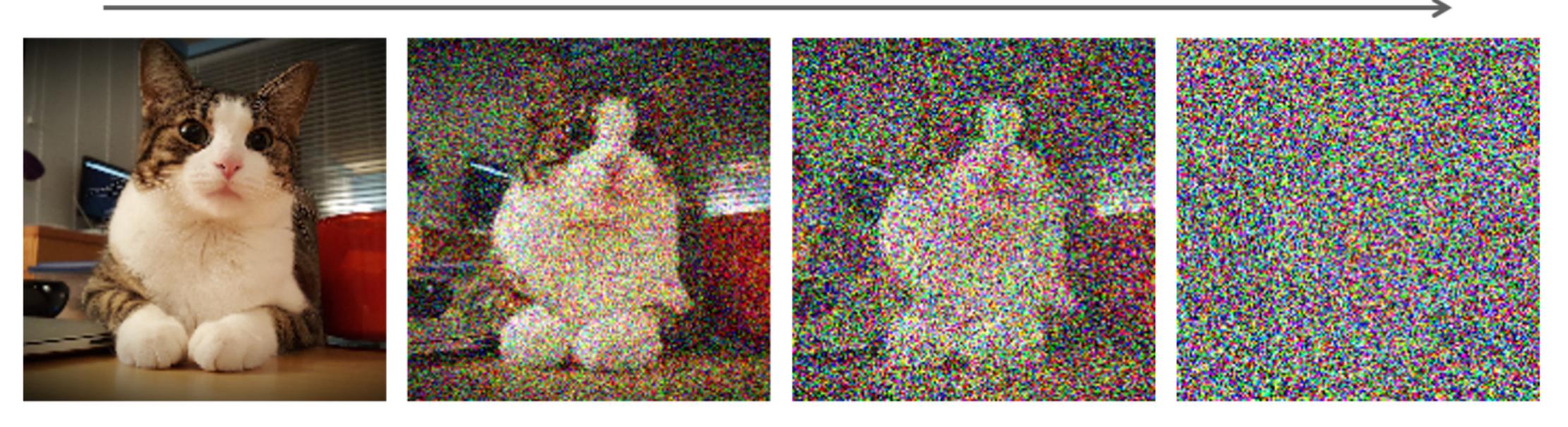
Score-based generative models

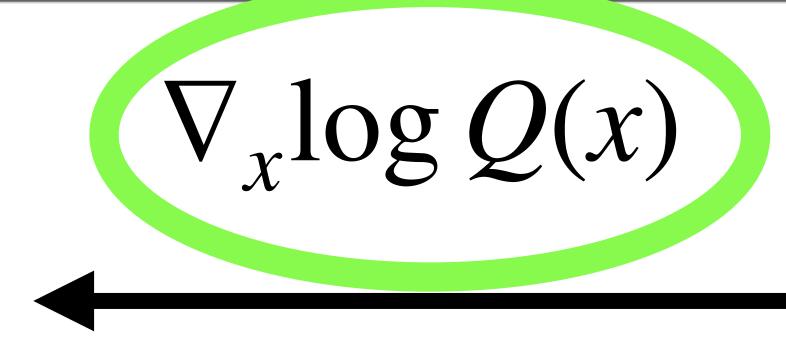




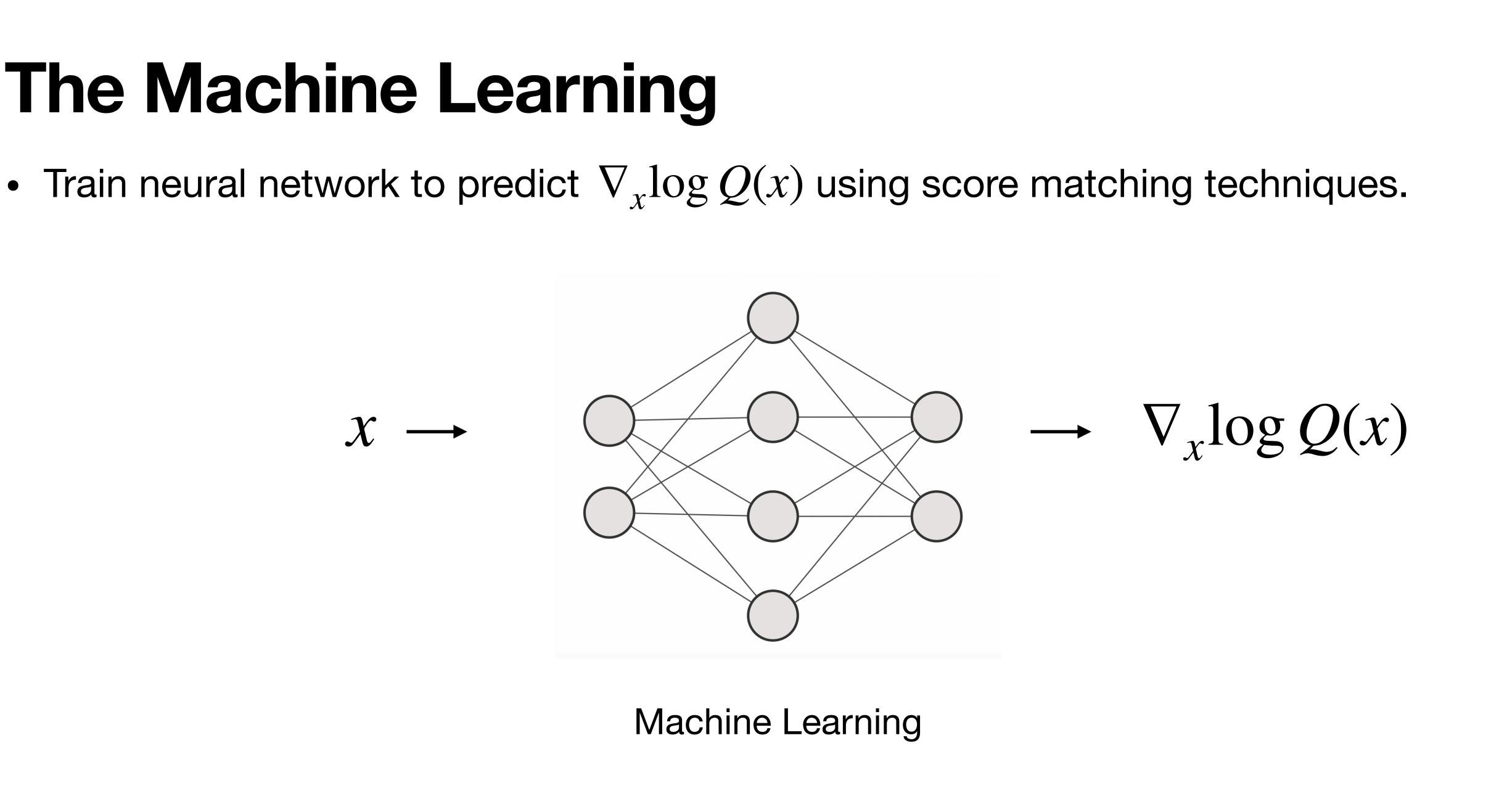
 $\nabla_x \log Q(x)$

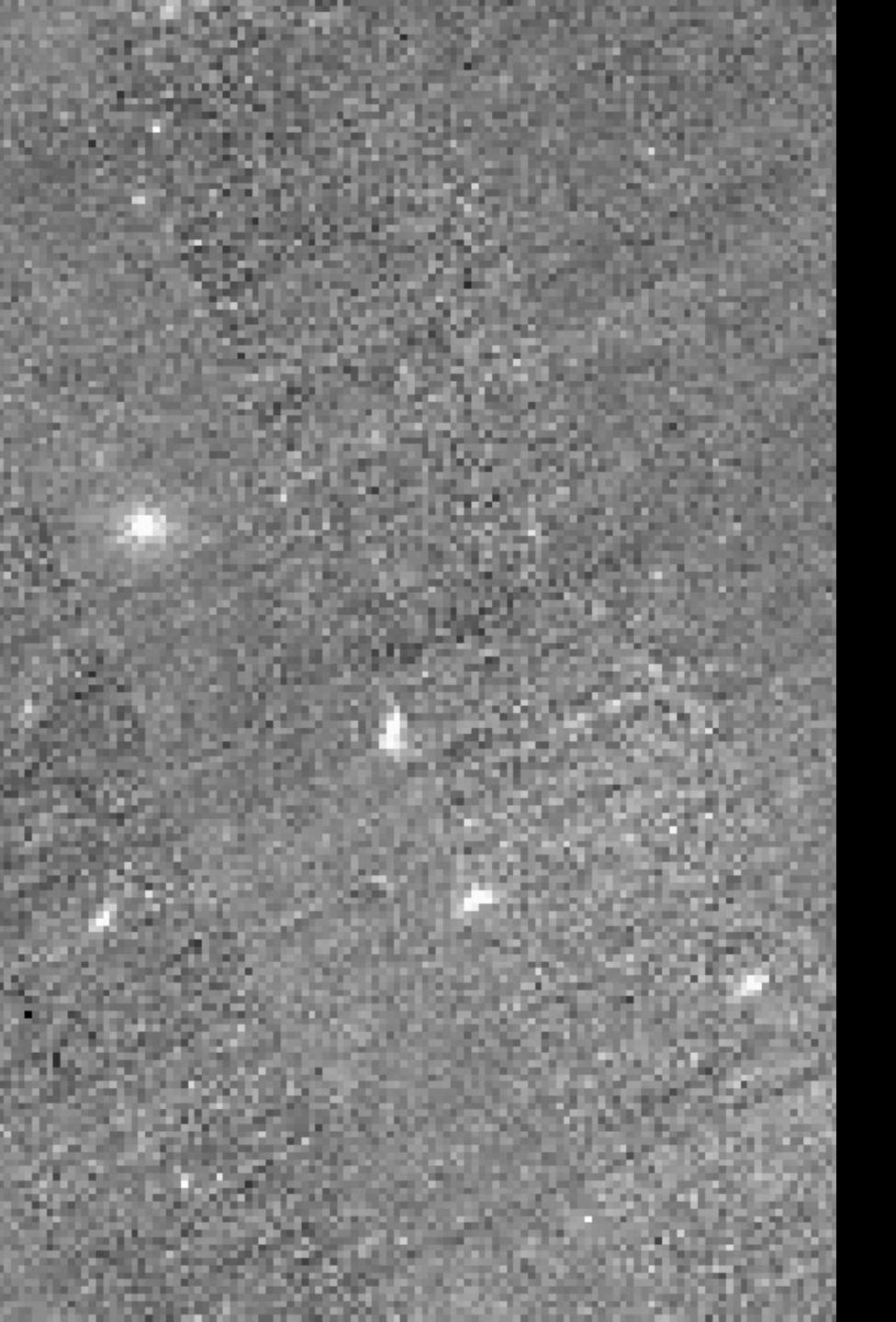
Score-based generative models

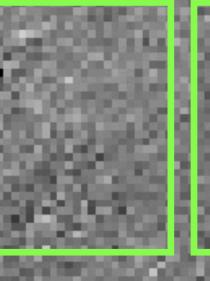




The Machine Learning







£.

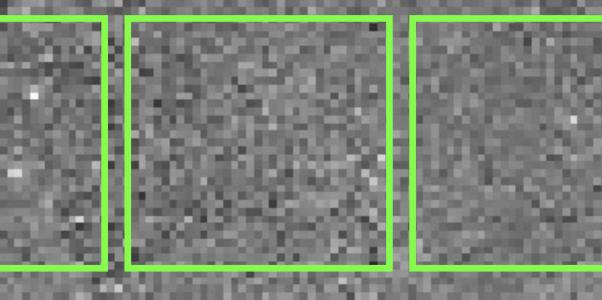
10010-000

ŝ

88

2005 2000

202



264

CHINESE ST

SP

1000 PULLIN N

В

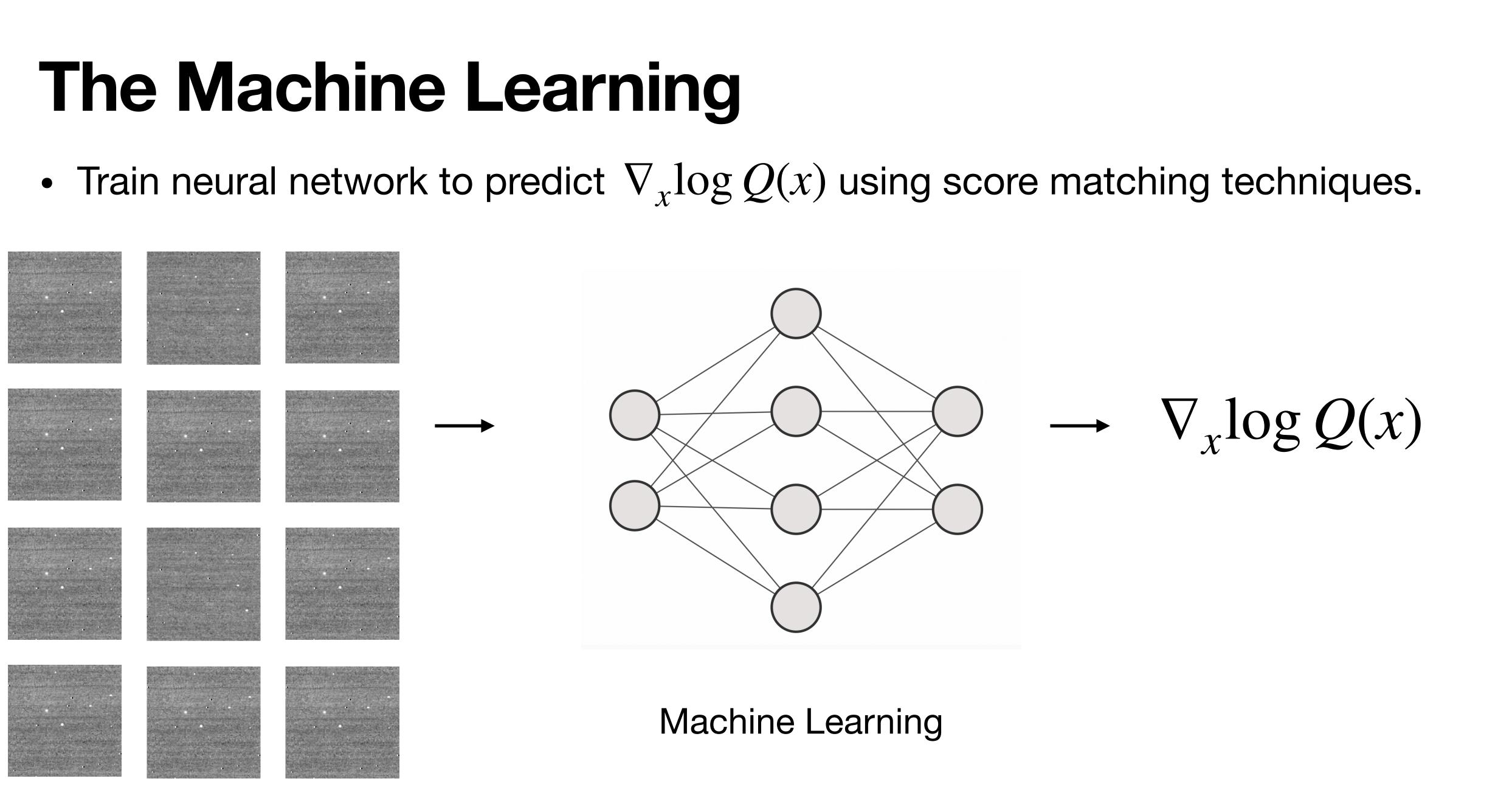
3

10.00 A DOWNER OF THE

CONTRACTOR OF A DESCRIPTION

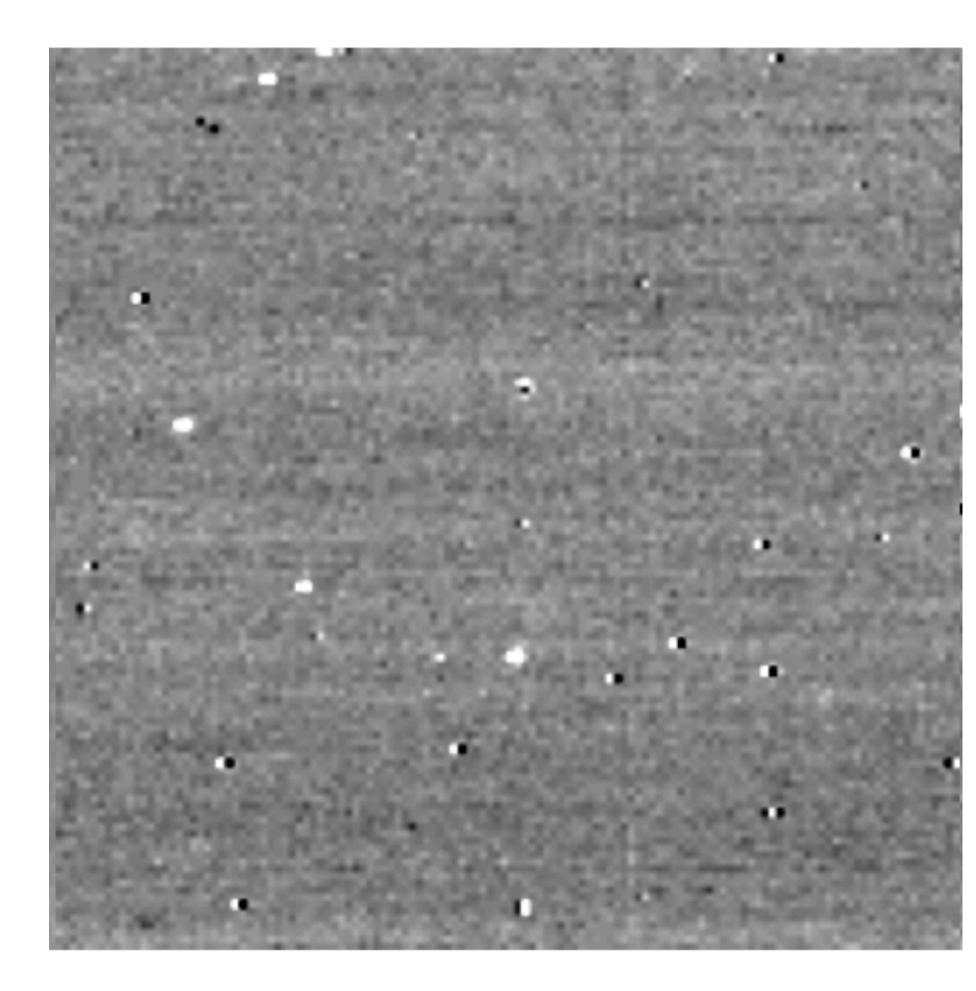
100

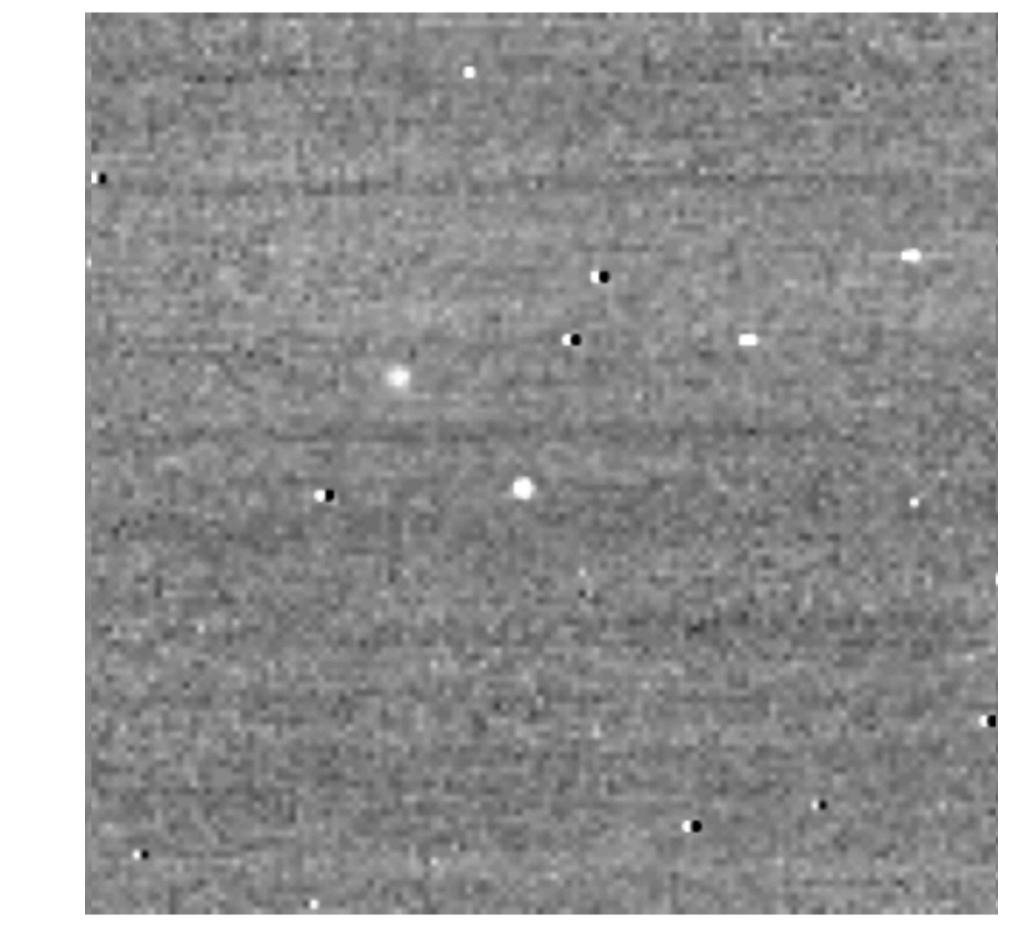
The Machine Learning



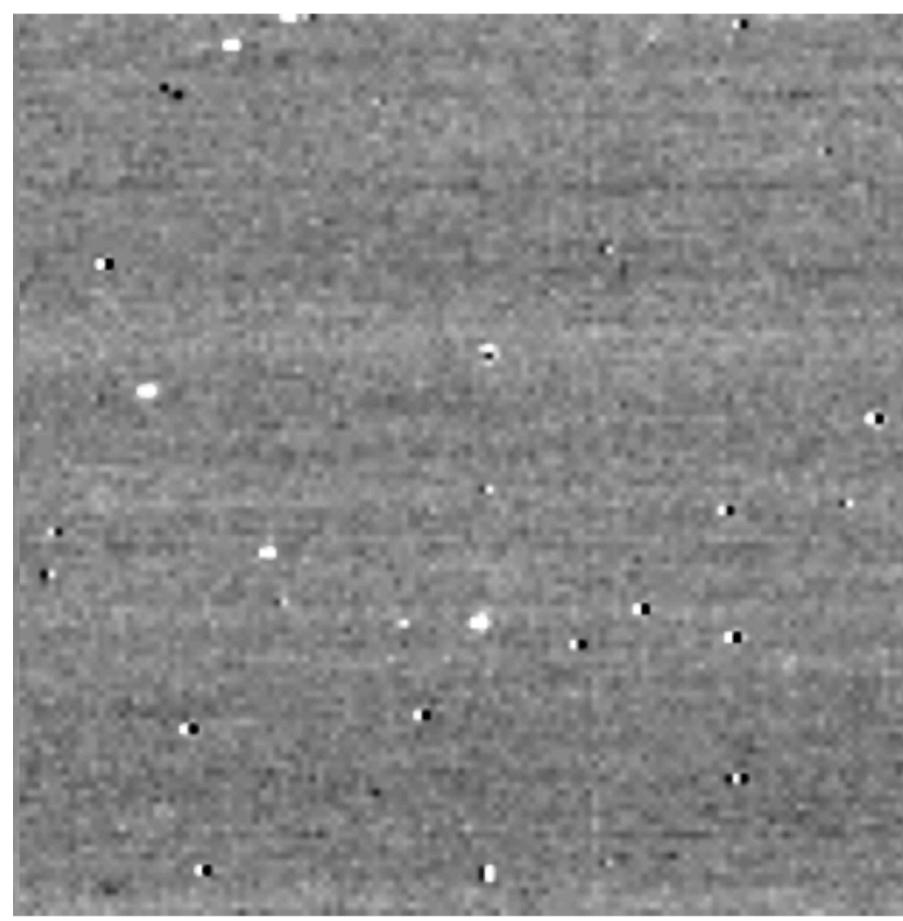
Results

• Can sample new noise. Which one is real?

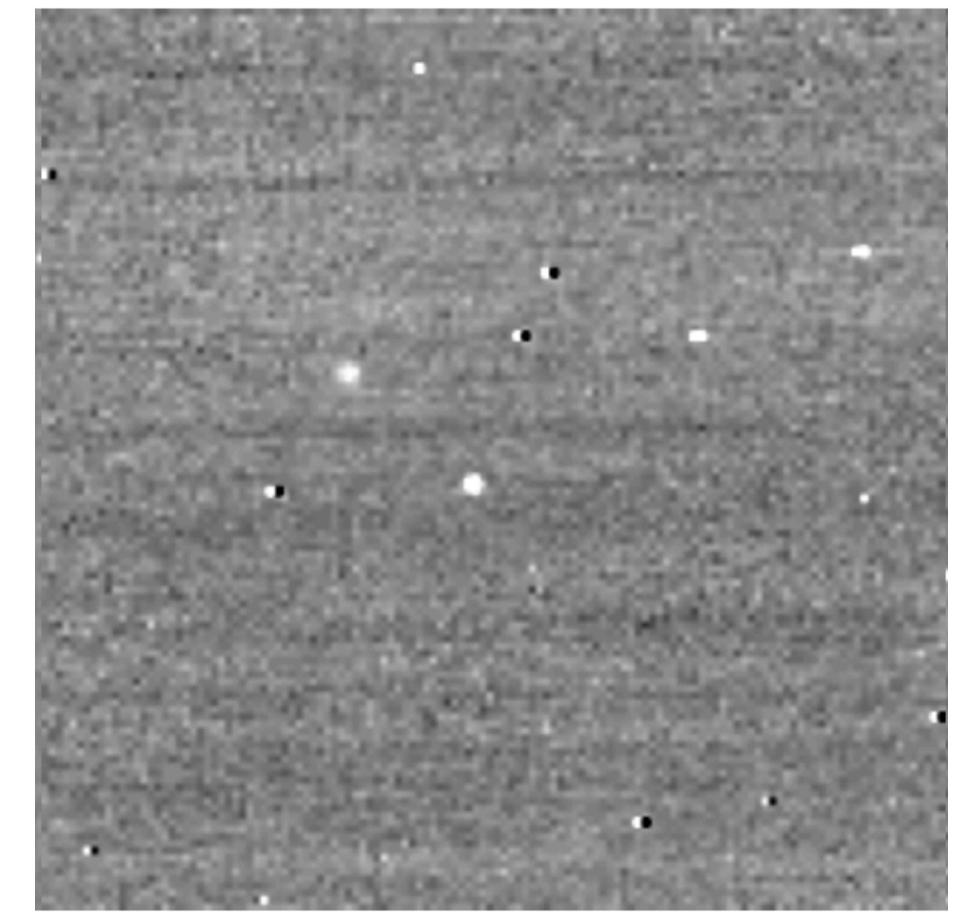




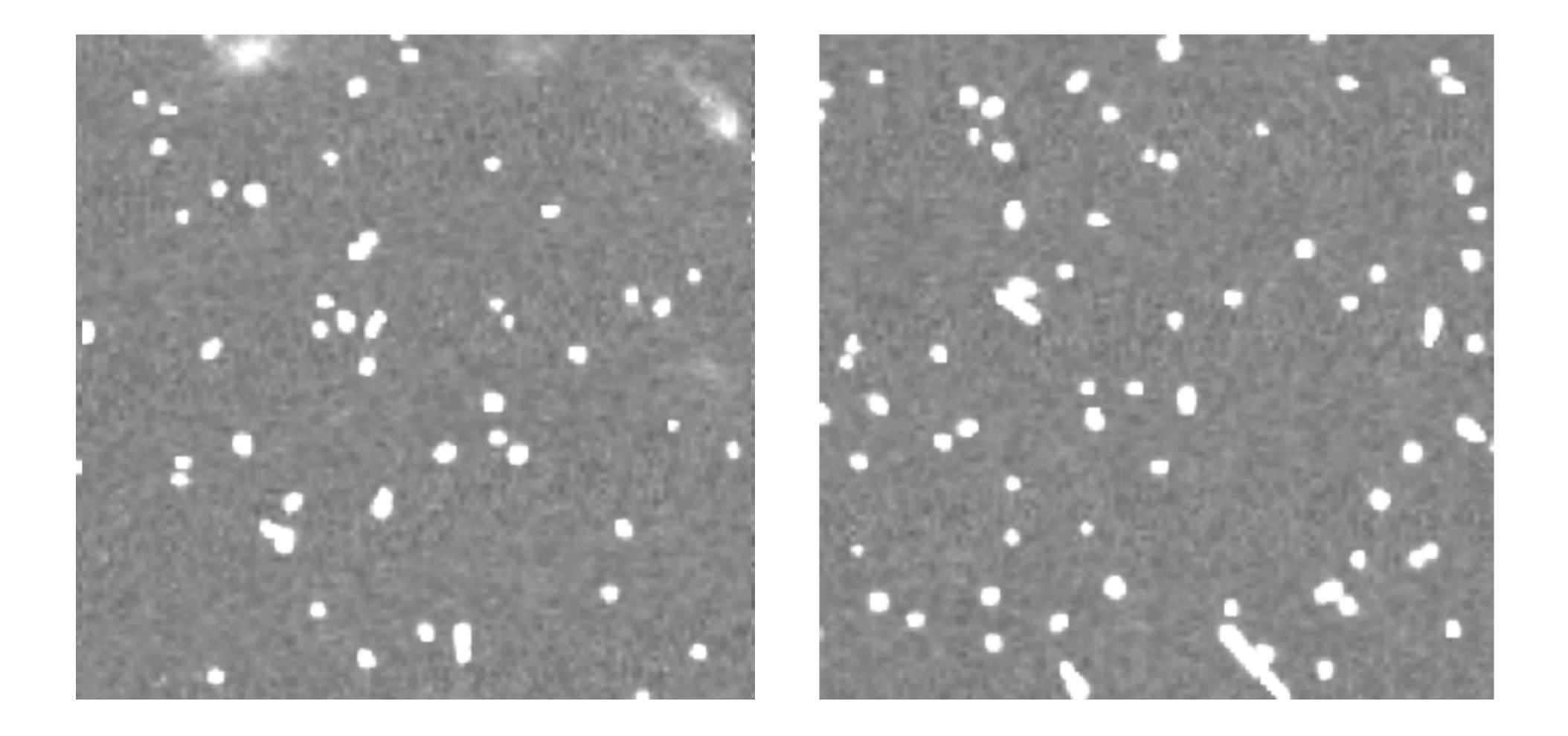
• Can sample new noise. Which one is real? Real



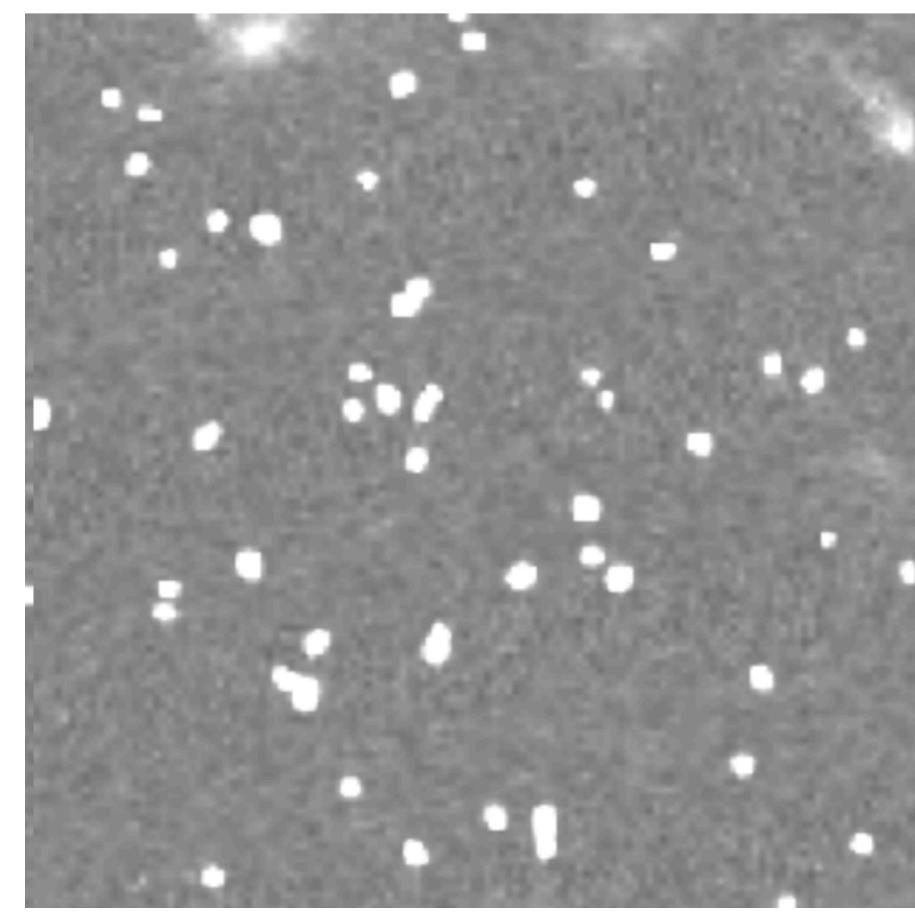
Fake (generated)



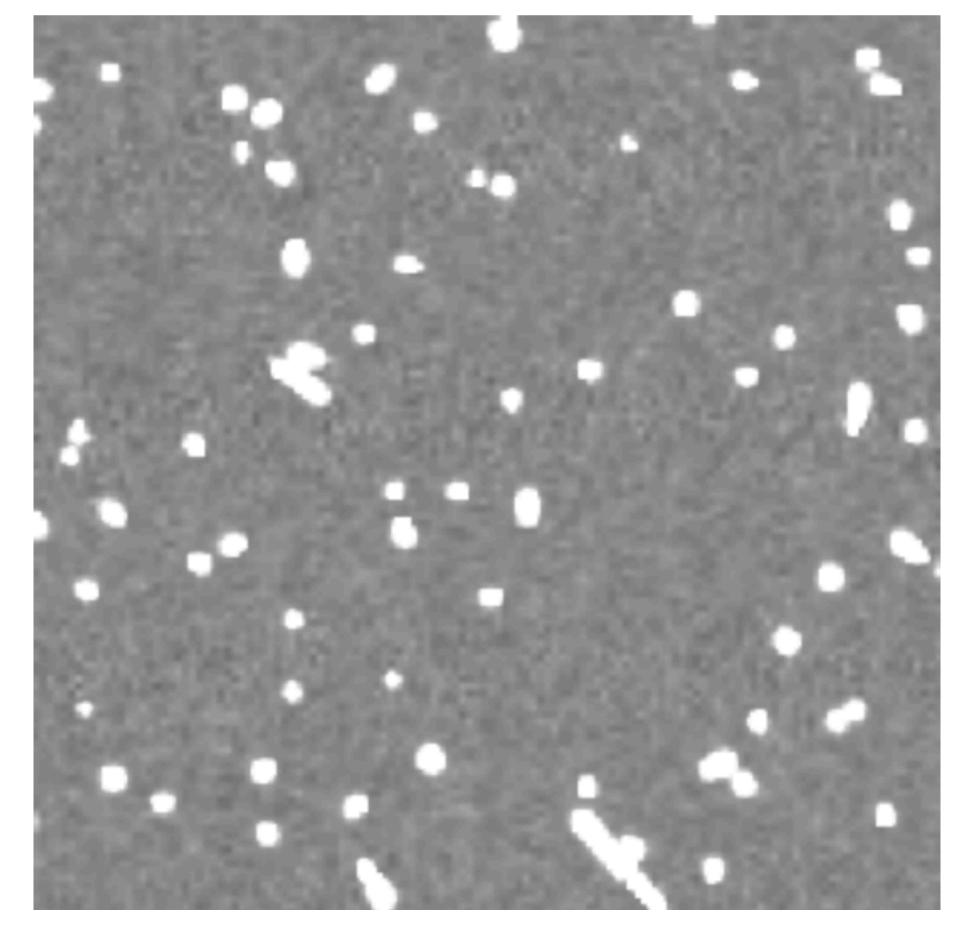
• Can sample new noise. Which one is real?



• Can sample new noise. Which one is real? Fake (generated)



Real



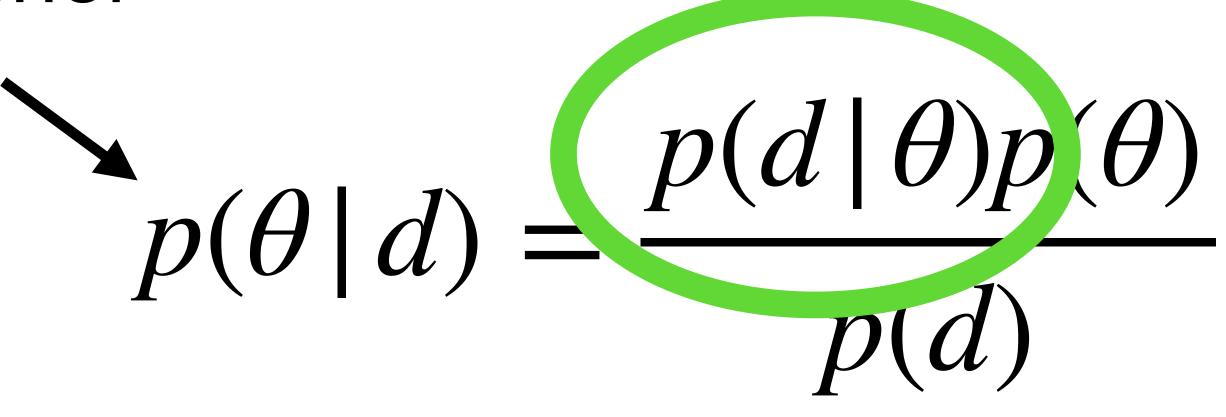
Besides sampling noise...

Inference!

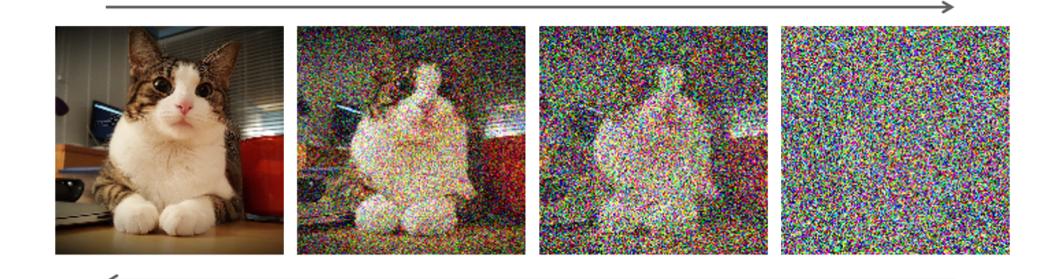
Posterior

$\mathbf{\hat{p}}(\theta \,|\, d) = \frac{p(d \,|\, \theta)p(\theta)}{p(d)}$

Posterior



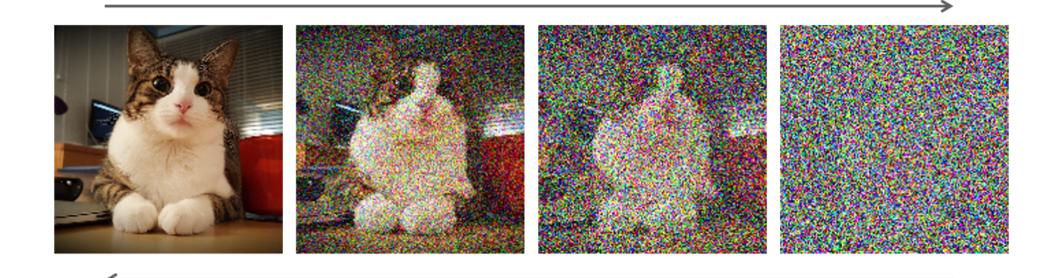
Likelihood



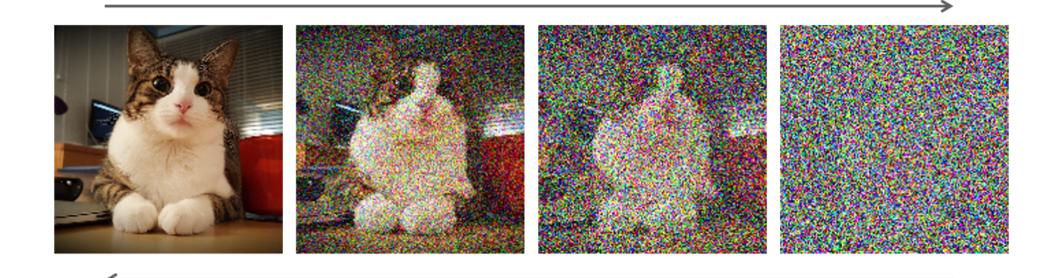
Posterior

$\nabla_{\theta} \log p(\theta \,|\, d) = \nabla_{\theta} \log p(d \,|\, \theta) + \nabla_{\theta} \log p(\theta)$

Likelihood



Posterior Likelihood $\nabla_{\theta} \log p(\theta \,|\, d) = \nabla_{\theta} \log p(d \,|\, \theta) + \nabla_{\theta} \log p(\theta)$



Posterior Likelihood $\nabla_{\theta} \log p(\theta \,|\, d) = \nabla_{\theta} \log p(d \,|\, \theta) + \nabla_{\theta} \log p(\theta)$

Learned Noise

 $\nabla_x \log Q(x)$

SLIC Framework (Score-based Likelihood Characterization)

- \bullet
- Currently tested on additive noise X

• $P(d \mid \theta) = Q(d - M(\theta)) \rightarrow \nabla_{\theta} \log$

Integrate learned noise distribution within well-defined Bayesian framework.

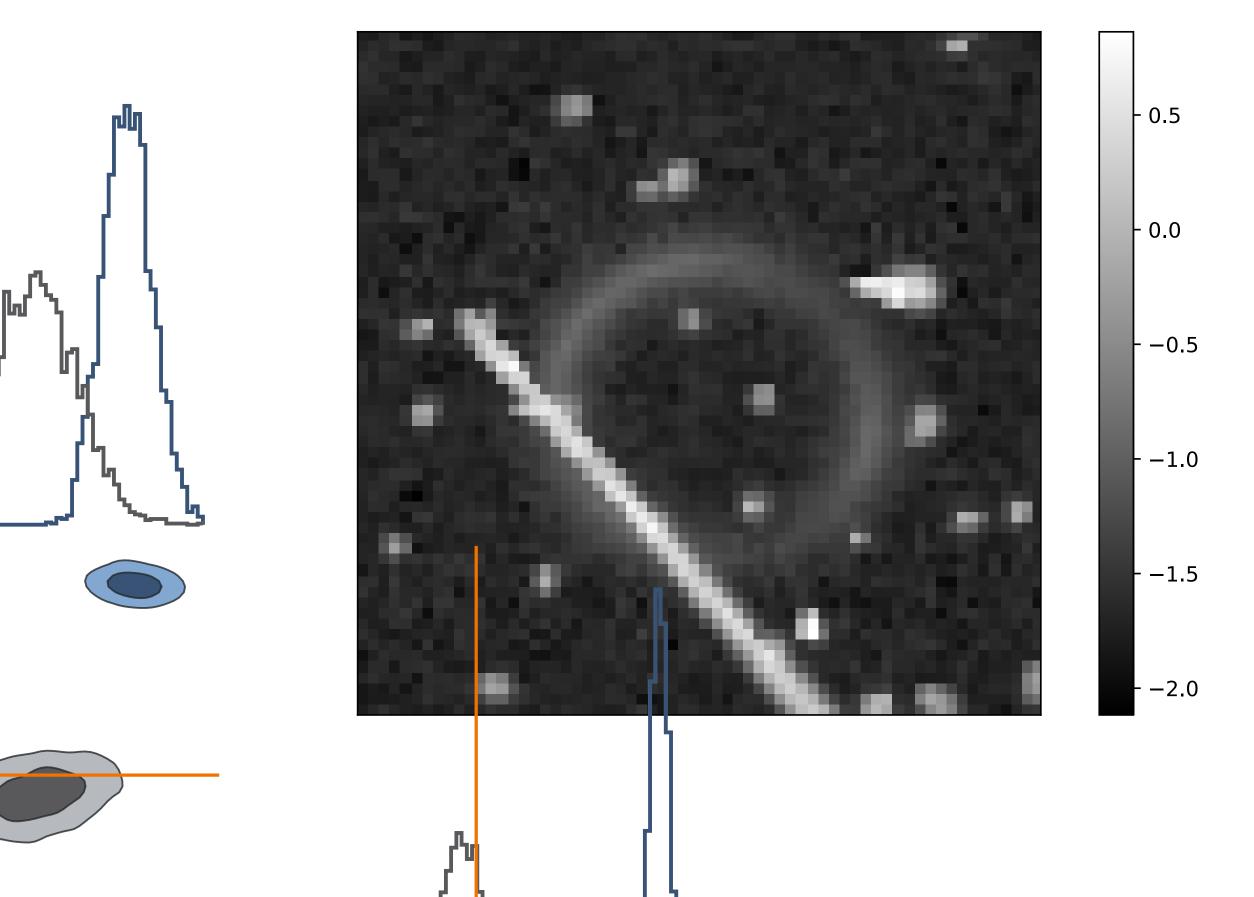
$$K = M(\theta) + N$$

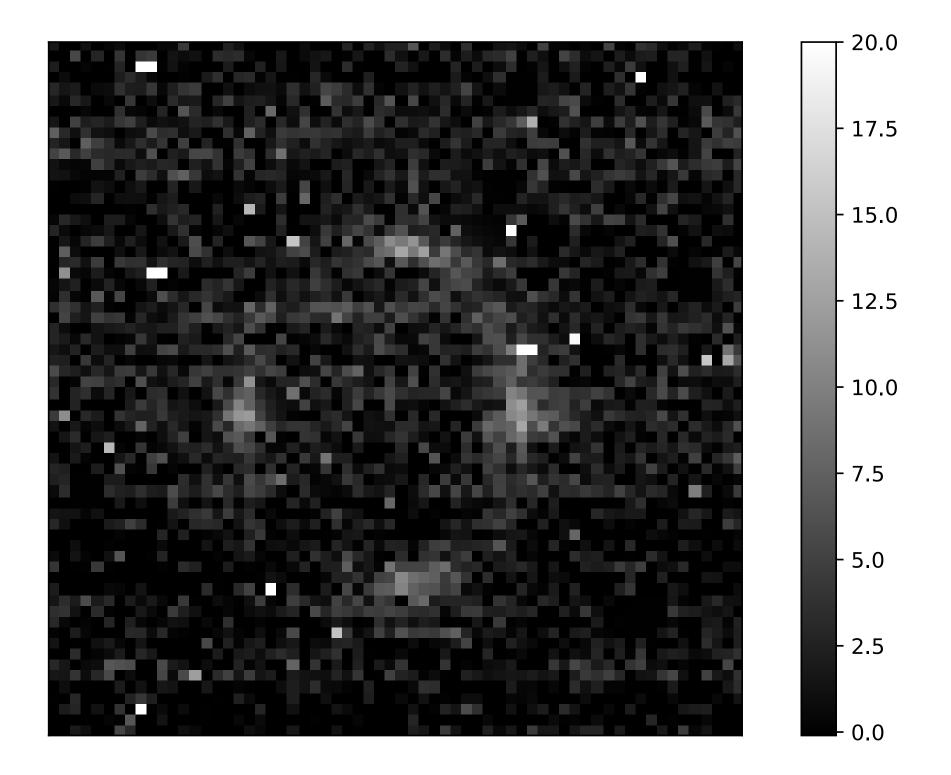
$$Q(d - M(\theta)) = -\nabla \log Q \cdot \nabla_{\theta} M$$

$$\int Our \text{ noise model!}$$

SLIC Example

• Real noise + simulated strong lens test problem

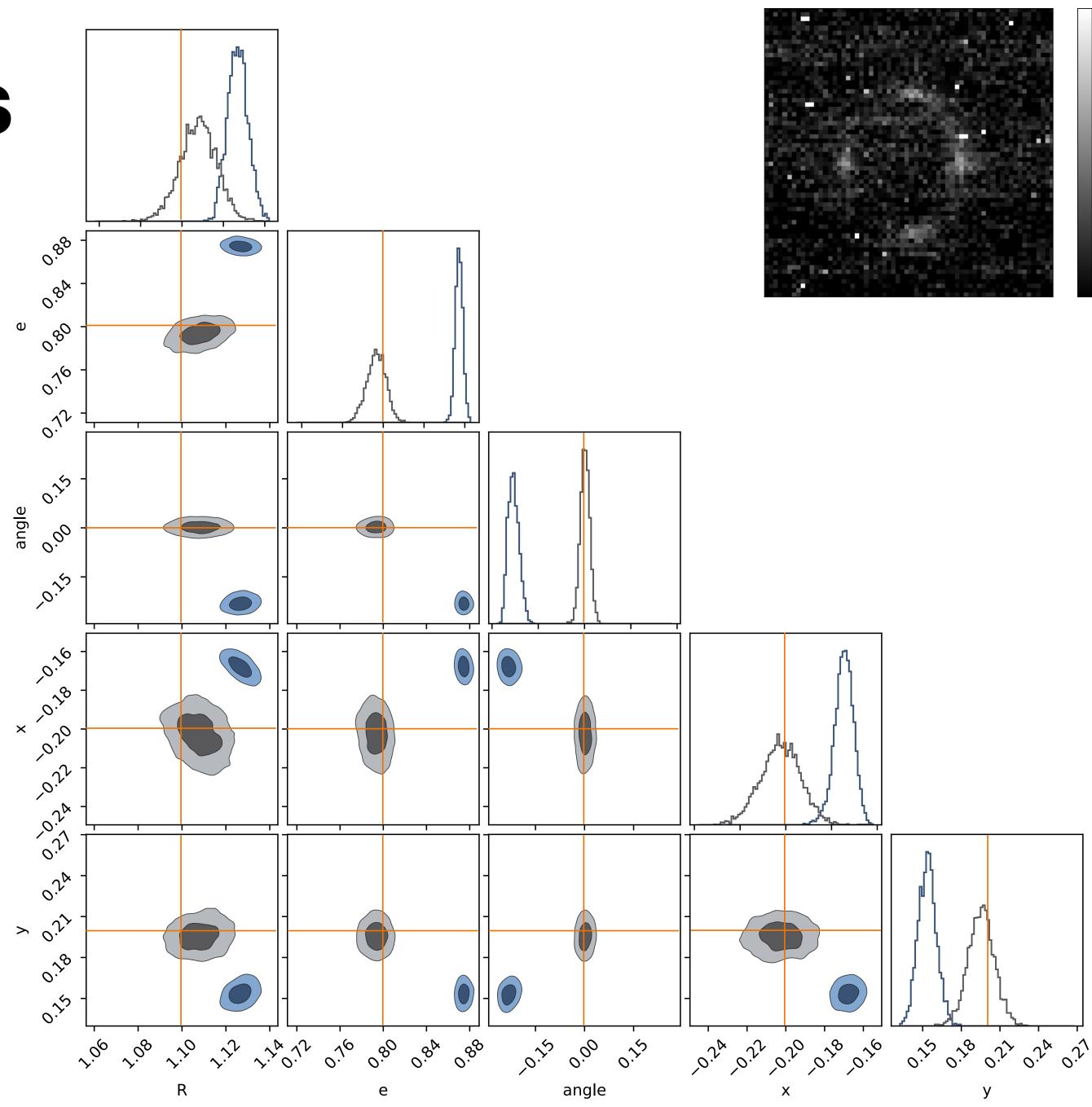




SLIC JWST Results

Φ

- We achieve accurate inference!
- Blue is Gaussian Likelihood
- Grey (middle blob) is SLIC.



Γ	20.0
-	17.5
_	15.0
	12.5
-	10.0
-	7.5
-	5.0
_	2.5
	0.0

SLIC HST Results

• We achieve accurate inference!

0.00

angle

0,2

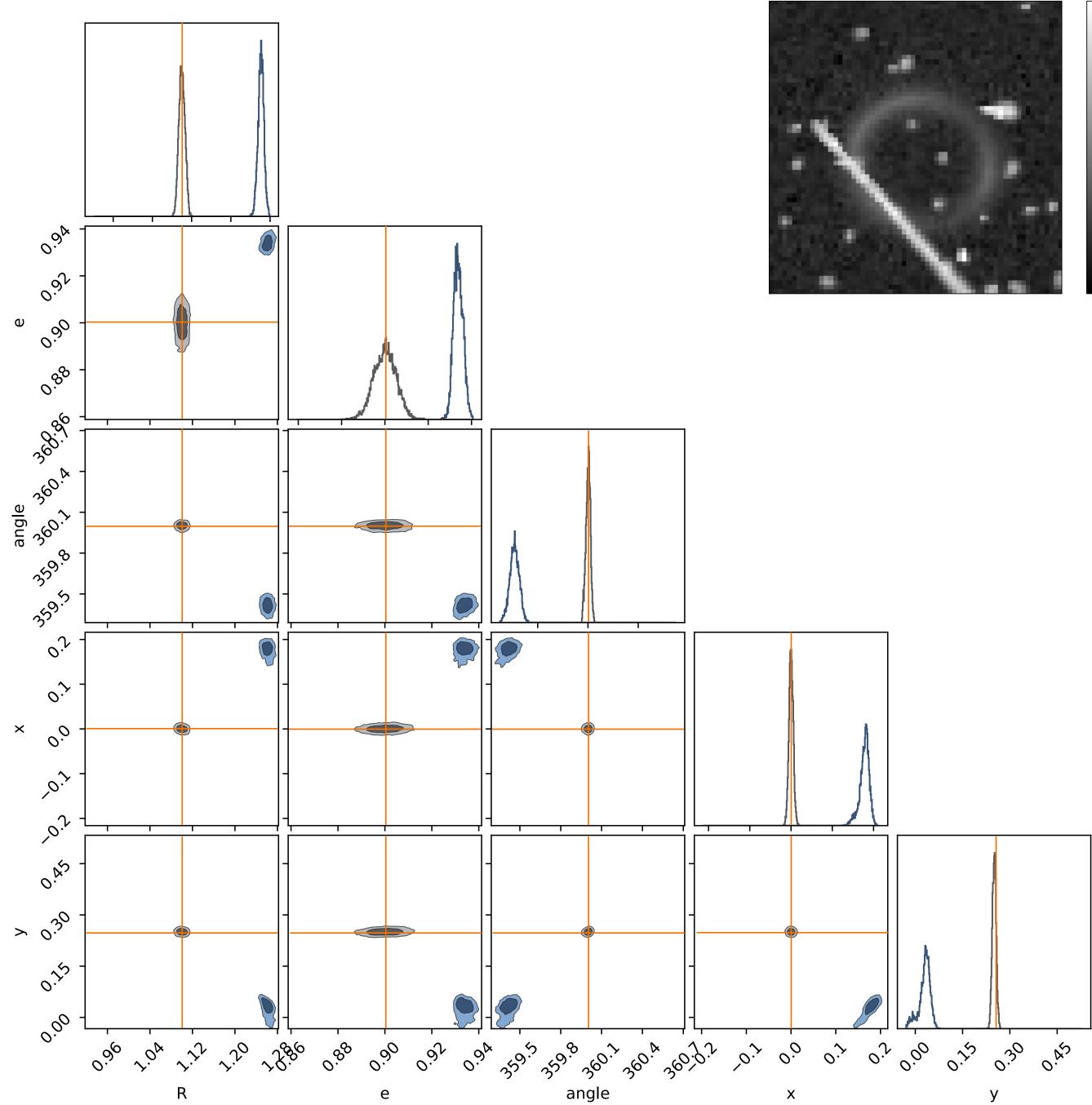
0.

,0,2

 \times

Φ

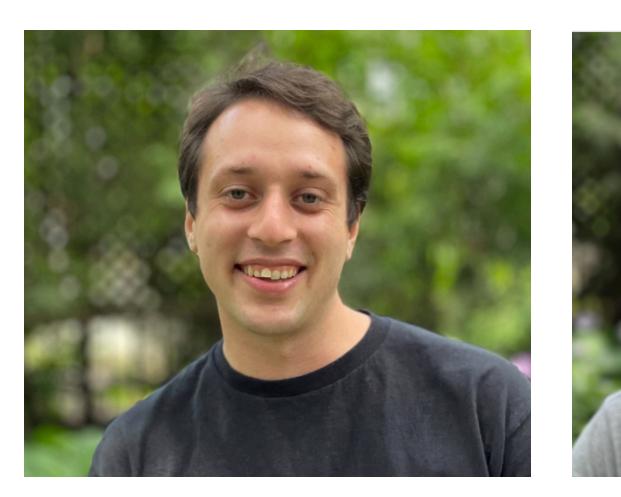
- Blue is Gaussian Likelihood
- Grey (middle blob) is SLIC.



Beyond Gaussian Noise: A Generalized Approach to Likelihood Analysis with non-Gaussian Noise

RONAN LEGIN,^{1, 2, 3, *} ALEXANDRE ADAM,^{1, 2, 3, *} YASHAR HEZAVEH,^{1, 2, 3, 4} AND LAURENCE PERREAULT LEVASSEUR^{1, 2, 3, 4}

¹Department of Physics, Université de Montréal, Montréal, Canada
²Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning, Montréal, Canada
³Mila - Quebec Artificial Intelligence Institute, Montréal, Canada
⁴Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, 10010, New York, NY, USA



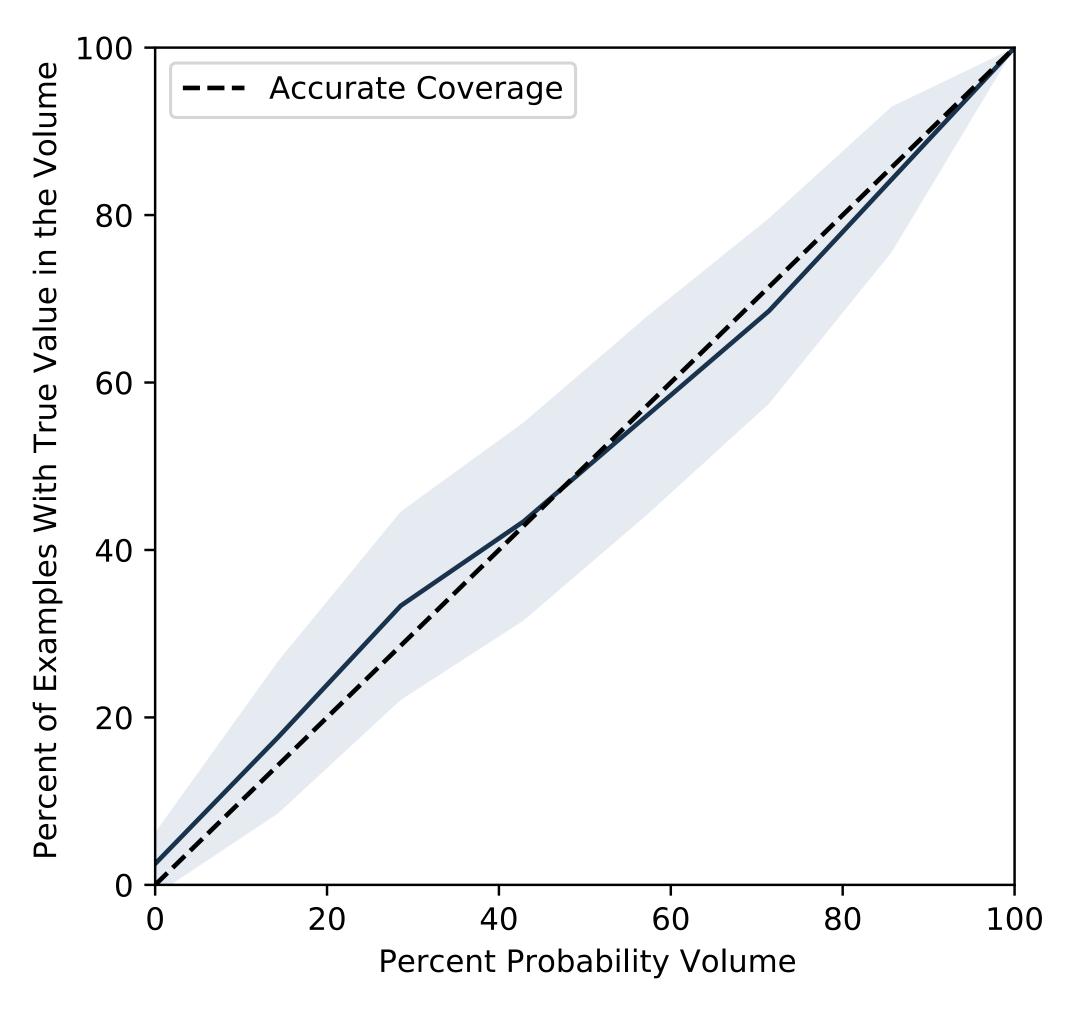
Conclusion

- Astrophysical noise is often non-Gaussian.
- We learn this noise to perform unbiased statistical inference.
- SLIC <u>https://arxiv.org/abs/2302.03046</u>

Thank you!

Extra slides

Coverage Tests SLIC

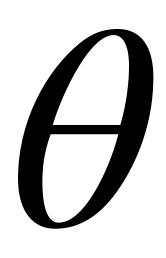


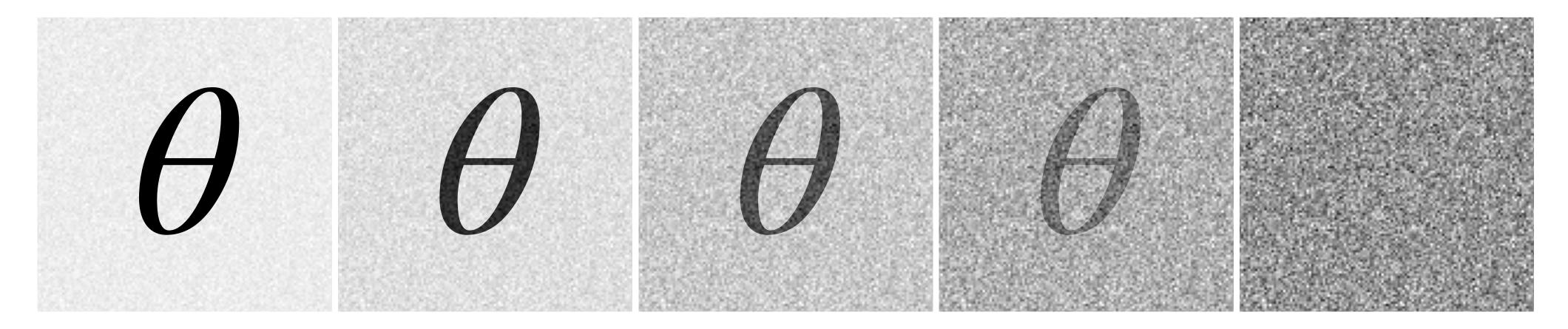
The Machine Learning • Score matching with transfer kernel $p(x_t | x_0) = \mathcal{N}(x_0, \sigma^2(t))$

(Hyvärinen 2005; Vincent 2011; Song et al. 2020)

$\|f_{\eta}(x_t, t) - \nabla_{x_t} \log p(x_t | x_0) \|^2$

Posterior sampling

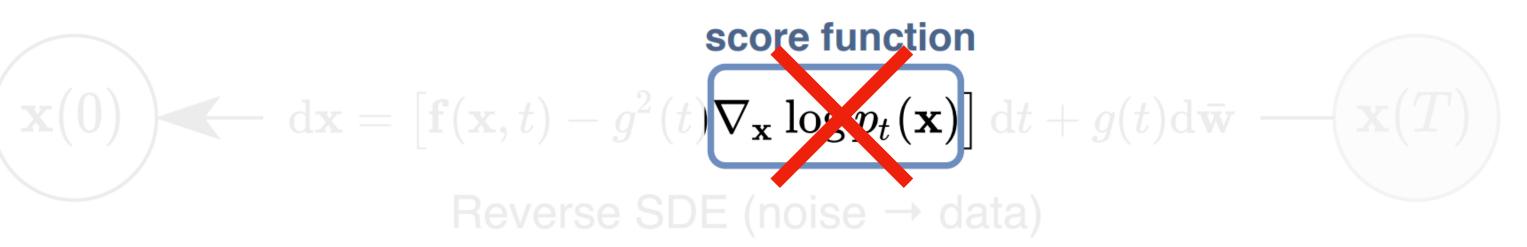




Likelihood Prior

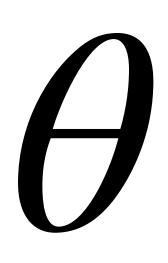
 $\nabla_{\theta} \log P_t(X | \theta) + \nabla_{\theta} \log P_t(\theta)$

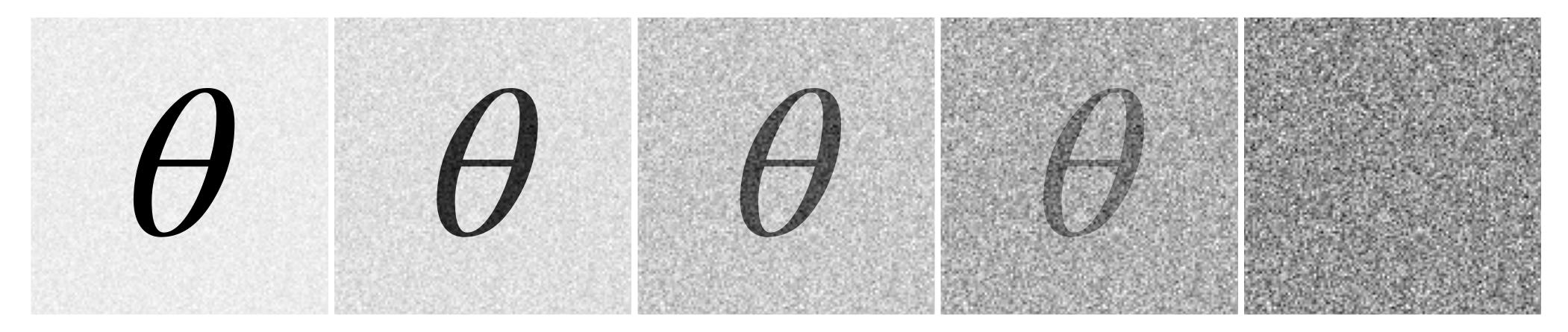
Forward SDE (data \rightarrow noise) $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$ -



SLIC inference







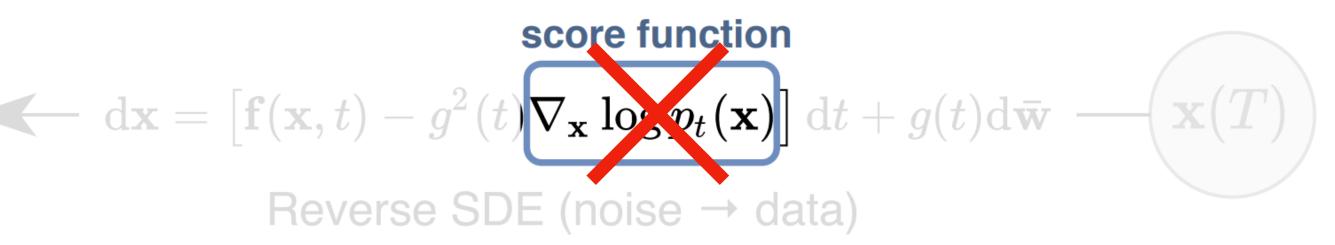
 $\mathbf{x}(0)$

Likelihood

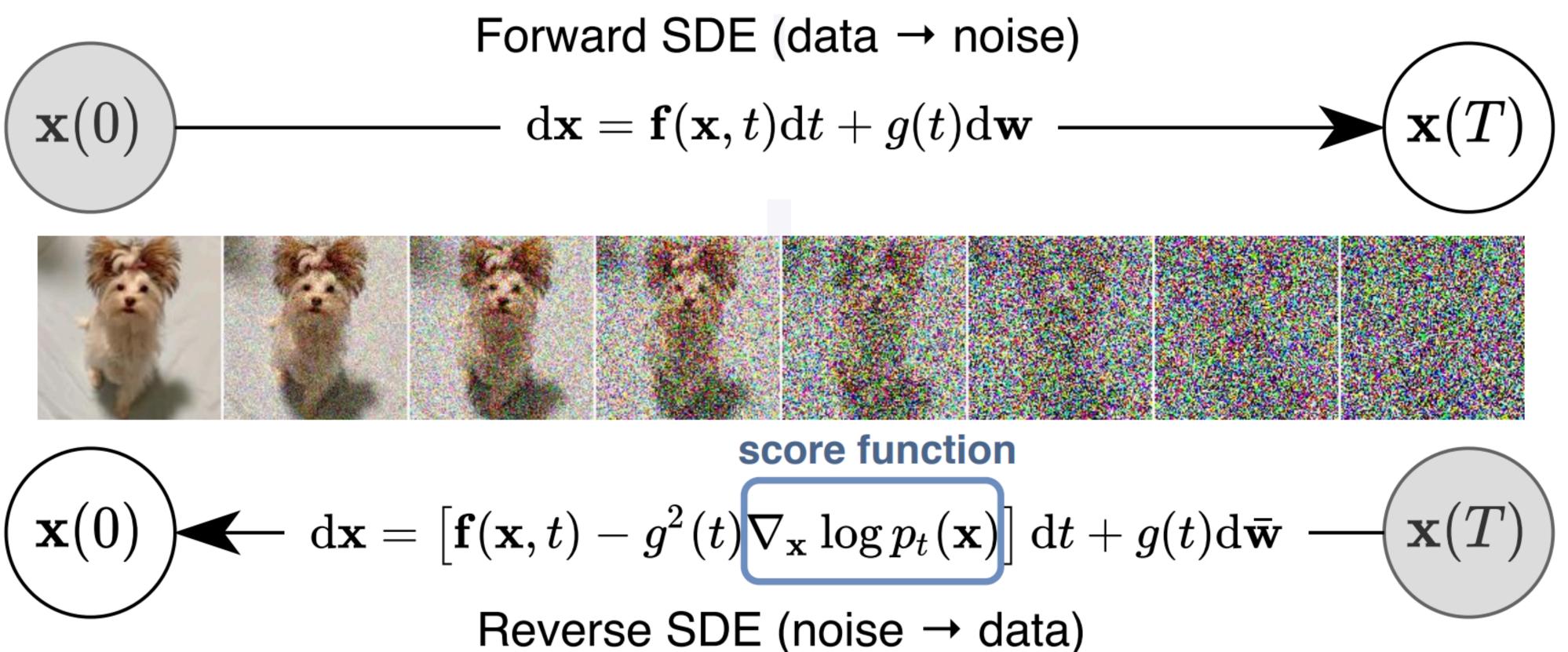
Prior

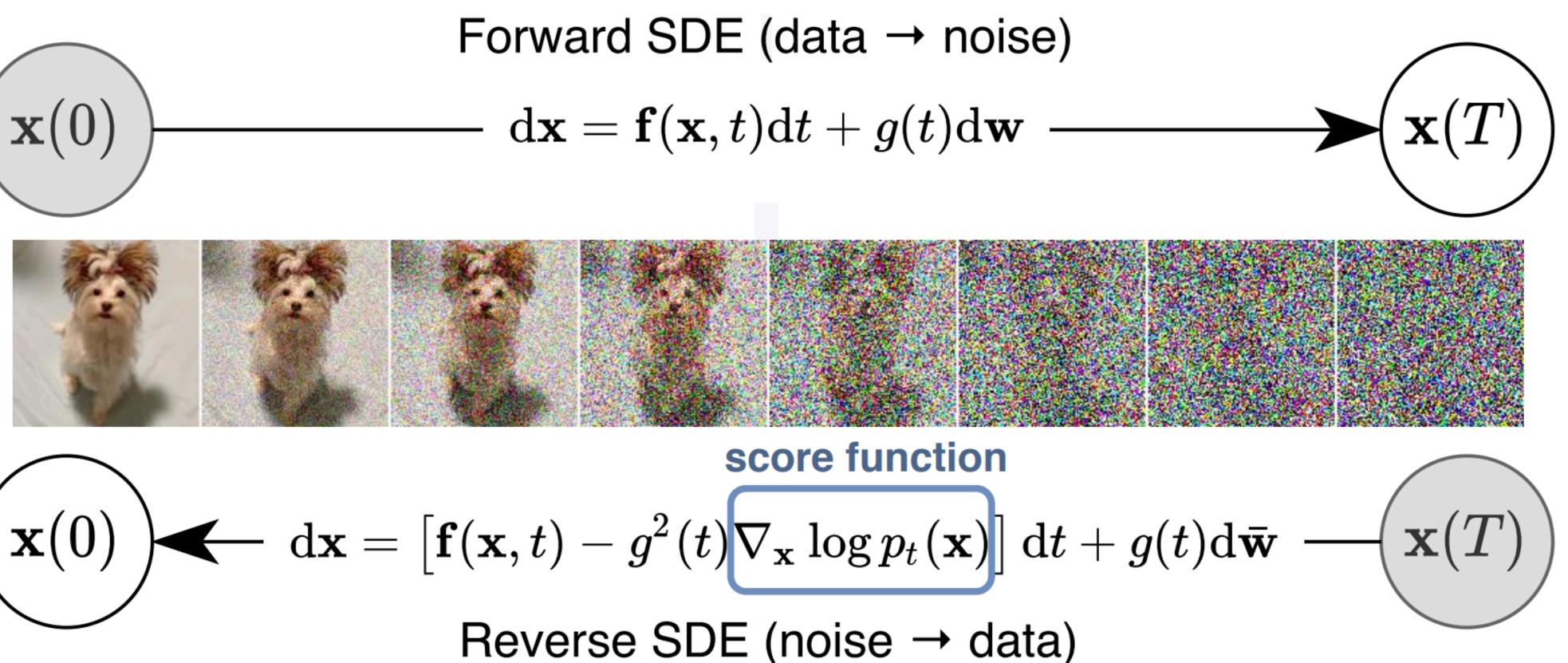
 $-\nabla_{X-M(\theta)}\log Q\cdot\nabla_{\theta}M(\theta)+\nabla_{\theta}\log P_{t}(\theta)$

Forward SDE (data \rightarrow noise) $\mathrm{d}\mathbf{x} = \mathbf{f}(\mathbf{x},t)\mathrm{d}t + g(t)\mathrm{d}\mathbf{w}$ –



Score-based generative models





SLIC Framework (Score-based Likelihood Characterization)

- Assume additive noise $X = M(\theta) + N$
- Given previous point, we can write likelihood $P(X | \theta) = Q(X M(\theta))$
- $Q(X M(\theta))$ is probability density of noise

SLIC trick Decomposition with chain rule

- $\nabla_{\theta} \log Q(X M(\theta)) = -\nabla_{X M(\theta)} \log Q(X M(\theta)) \cdot \nabla_{\theta} M(\theta)$
- This separates noise distribution Q from forward simulator M

SLIC trick Decomposition with chain rule

- $\nabla_{\theta} \log Q(X M(\theta)) = -\nabla_{X M(\theta)} \log Q(X M(\theta)) \cdot \nabla_{\theta} M(\theta)$
- This separates noise distribution Q from forward simulator M

Model
$$\nabla_{X-M(\theta)} \log Q(X)$$

 $(-M(\theta))$ using score network!