Atmospheres of low-mass star planets

Vigneshwaran Krishnamurthy, Nicolas Cowan

Trottier Space Institute at McGill

CRAQ May 2023

Evolution of atmospheres

(Earth/super-Earth-sized planets)

- Smaller planets = solid core (0.8-1.5 R_{\oplus}) + small but varying H/He (Owen & Wu 2017; Fulton et al. 2017)
- Evaporation → barren rocky Earth-sized or super-Earths or gaseous sub-Neptunes.
- → Bimodal distribution in radius-period plot → "Radius gap" at 1.5 2 R_{\oplus} (Fulton et al. 2017)

NASA Exoplanet Archive, April 2023.

>1.5 R_⊕ + ≥1% H/He ≤1.5 R_⊕ + ≥1-2% H/He

??

Why low-mass stars?

- ✓ Mass < 0.65 M_{\odot} .
- ✓ Most common stars. (M-dwarfs: ~75% in Milky Way; ~10¹⁰ Earth-sized planets)
- ✓ Small rocky planets around small stars \rightarrow high transit depth.
- \rightarrow Larger Doppler shifts.
- \rightarrow Habitable Zone (HZ) is relatively closer to the star.
- →Evaporation of H/He atmospheres → formation of secondary atmosphere → Habitability (maybe!)
- ✓ Shorter orbit → Higher transit frequencies.
- ✓ Spectral dominance in infrared (and NIR).

Many molecular bands in stellar spectra.
Stellar surface activities.

Ref: Henriques Stellar Classification, Oxford Press, 2013.

Evaporation marker: He I triplet at 1083 nm

- Advantages of He I:
- \rightarrow Not affected by ISM or geocorona.
- →Ground-based observation using high-resolution spectrograph on medium-to-large telescopes.
- Best targets: K-dwarfs and M-dwarfs
- \rightarrow High XUV \rightarrow High metastable He
- \rightarrow Low mid-UV \rightarrow High He in triplet state (Oklopčić 2019)

(Oklopčić & Hirata, 2018)

Planet name	Radius (R_{\oplus})	Mass (${\rm M}_\oplus)$	a (AU)	Spec. type
TOI-1235b**	$1.738^{+0.087}_{-0.076}$	$6.91\substack{+0.75 \\ -0.85}$	$0.03845\substack{+0.00037\\-0.00040}$	M0.5
GJ 9827b ⁺	1.529 ± 0.058	4.87 ± 0.37	0.01866 ± 0.00019	K5
GJ 9827d+	1.955 ± 0.075	3.29 ± 0.64	$0.0555\substack{+0.00055\\-0.00057}$	K5

Note: + Kosiarek et al. (2021) ** Cloutier et al. (2020);

Telescope and instrument

Subaru 8.2m telescope
Elevation: 4207 m
Place: Mauna Kea, Hawaii

• Instrument: InfraRed Doppler (IRD) (Tamura et al. 2012; Kotani et al. 2014) $R \sim 70,000$ Wavelength coverage: 0.97 μ m - 1.75 μ m Wavelength calibration: Laser Frequency Comb (LFC) Vacuum cooled optics and detectors Throughput: 2-3% around 1000-1200 nm

GJ 9827b and GJ 9827d – either side of radius gap

GJ 9827b and GJ 9827d

GJ 9827b and GJ 9827d – either side of radius gap

TOI-1235b – keystone super Earth in radius gap

TOI-1235b – keystone super Earth in radius gap

Photoevaporation in low-mass stars' planets?

- From TOI-1235b → rocky → supporting evaporation through photoevaporation and/or corepowered mass-loss.
- GJ 9827b and GJ 9827d \rightarrow difficult to guess.

(Krishnamurthy et al 2023; Krishnamurthy et al. – in prep)

Telescope GO programs

- Subaru program: IRD-SSP (PI: Bunei Sato)
- Subaru program: S20A-UH104 (PI: Eric Gaidos)
- Subaru program: S20B-069 (PI: Vigneshwaran Krishnamurthy)
- Subaru program: S21A-100 (PI: Vigneshwaran Krishnamurthy)
- Subaru program: S21A-129 (PI: Teruyuki Hirano)