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Central Black Holes and Their Host Galaxies

Co-Evolution and Feedback from Supermassive Black Holes (SMBHSs)

* A strong correlation between the
properties of the SMBHs and

their host galaxies.

« The SMBHs and their hosts
seem to evolve together.

Correlation Between Black Hole Mass
and Bulge Mass
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Central Black Holes and Their Host Galaxies

Co-Evolution and Feedback from Supermassive Black Holes (SMBHSs)

* A strong correlation between the
properties of the SMBHs and
their host galaxies.

« The SMBHs and their hosts
seem to evolve together.

* Feedback from Accreting Black Holes

e Central SMBHs impart energy,
mass, and radiation to the host
galaxies

Credit: SDSS
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Quasars

and supermassive black holes

Most (all) massive galaxies have
supermassive black holes (SMBHS) in
their centers.

SMBH in Milky Way: ~ 4 million Me
=» quasars: MgH ~ 10-1,000 million Me

Accreting SMBH forms an active galactic =
nucleus (AGN)

=» accretion disk, torus, broad/narrow
line clouds

One of the brightest extragalactic
objects

=¥ emits In radlo ~ X_ray Credit: International Gemini Observatory/
NOIRLab/NSF/AURA/P. Marenfeld



Broad Absorption-Line Quasars

Powerful outflows that drive feedback from the central supermassive black holes

* Quasar outflows
-» AGNs feeding energy and gas
to their host galaxies.

 Broad absorption-lines (BAL)
features show clear evidence for
energetic winds

e Found in ~ 15—40 % of the rest-
ultraviolet (UV) quasar spectra

 Feedback and Galaxy Evolution
=» BAL quasars are prime targets
for investigating the potential Z>
mechanism of feedback on galaxies

Observer

Wavelength

)
Image Credits: NASA/CXC{top); A. Lucy (bottom) Photon



Iron Low-lonization BAL Quasars

BAL quasars with the most energetic outflows

Credits: Vanden Berk et al. 2006 {top); Hall et al. 2002 (bottom)



Iron Low-lonization BAL Quasars

BAL quasars with the most energetic outflows
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Iron Low-lonization BAL Quasars

BAL quasars with the most energetic outflows
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Iron Low-lonization BAL Quasars

BAL quasars with the most energetic outflows
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SImBAL

A spectral-synthesis forward-modeling method for analyzing
BAL quasar spectra
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A spectral-synthesis forward-modeling method for analyzing
BAL quasar spectra

BRSOt e S eah o Ll ot S vas e ¢ =

'5 Grld of Cloudy gas mput parmetersw N T

/
E (specified SED and metallicity): SpeCtraI SynthESB Inputs i

’: * Density: log n
R © Column density parameter: log N,- Iog U

e B

Grid of ionic column densitie

+

4 : )

Atomic data (NIST, Kurucz):
s ,
Posterior probability Markov Chain  Wavelengths

( ]

distributions: gas and I Monte Carlo * Oscillator strengths
[
[

. . \
\kmemat'c Fframeters [Synthetic Spectrum ' -+

|
]

Derived results: \ + ] \

| » Best-fitting parameters and [Observed Spectrum ] |
]

!

Cloudy results: ]
S

[
|
|
|
]
|
|

J

\

(Kinematic parameters:
* Number of bins

" * Velocity offset
uncertainties ]

* Velocity width
* Best-fitting spectrum Comparison using X’

* Covering fraction parameter
l° Derlved quantltles R M P, LKE) | B \\ ),

Leighly et al. 2018




SImBAL

A spectral-synthesis forward-modeling method for analyzing

BAL quasar spectra
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SImBAL

A spectral-synthesis forward-modeling method for analyzing

BAL quasar spectra
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SImBAL

A spectral-synthesis forward-modeling method for analyzing
BAL quasar spectra

Grid of Cloudy gas input parameters
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The Physical Properties of Low-redshift
FeLoBAL Quasars

Detailed spectral analysis of 50 FeLoBAL quasars at 0.66 <z < 1.63

=» identified ~ 60 BAL systems using SImBAL from the Sloan
Digital Sky Survey spectra

* Analyze the distributions, trends, and correlations among the
outflow properties
=» what are their physical properties?
=» where are the FeLoBAL outflow gas clouds /ocated?
=» how massive/energetic are the FeLoBAL outflows?

Choi et al. 2022, ApdJ, 937, 74



FeLoBAL gas at 10s ~ 1000s pc from the central
SMBH

Gas clouds with lower ionization and column density
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Please see Choi et al. 2022, ApJ, 937, 74 to view SimBAL model fits of 50 objects



FeLoBAL gas at 1s ~ 10s pc from the central
SMBH

Fell and iron-peak elements (e.g., Ni, Cr) create wide blended troughs
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Physical Properties of FeLoBAL Winds

The location of absorbing clouds and their potential origins
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Physical Properties of FeLoBAL Winds

The location of absorbing clouds and their potential origins

i . Distant
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Physical Properties of FeLoBAL Winds

The location of absorbing clouds and their potential origins

Distant

* FeLoBAL winds at a wide range e &L . ) lognt3fcm]
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=» nuclear/torus-scales (~ pc) to
galactic-scale (~ kpc)

R > 500 pc: host galaxy ISM
=» “cloud-crushing”
(Faucher-Giguiere et al. 2012);
in-situ formation in radiative shocks
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Physical Properties of FeLoBAL Winds

The location of absorbing clouds and their potential origins

Distant

FeLoBAL winds at a wide range |gutfiow log n = 3 [em-3]

of scales log n =8 [cm™~]
E ti

=» nuclear/torus-scales (~ pc) to Winde

galactic-scale (~ kpc)

R > 500 pc: host galaxy ISM

=» “cloud-crushing”
(Faucher-Giguiere et al. 2012);
in-situ formation in radiative shocks

log R [pcl]

10 < R < 500 pc: Torus, Polar Dust,
Narrow Line Region (e.g., [Olll])
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=» radiative line driving, dust acceleration
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Energetic FeLoBAL Outflows in Luminous
Quasars
Faster FeLoBAL winds are found in more luminous quasars

s Molecular Winds
+ lonized Winds
« BAL Winds

=» more energetic winds that are
capable of feedback

=» expected for radiatively driven
winds (Lgg & V3)
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Summary and Future

A new chapter in the study of BAL quasar outflows

=» wide range of physical properties,
large range of distances from the
central SMBHSs (4 orders of magnitude)
=» more luminous quasars have more
energetic winds
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central SMBHSs (4 orders of magnitude)
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energetic winds

, with its unparalleled analysis
capabilities, is able to:
=» analyze any variety of BAL quasar
spectra
=¥ investigate large samples of (Hi, Lo,
FelLo) BAL quasars! (e.qg., 4MOST)




Summary and Future

A new chapter in the study of BAL quasar outflows

48F4 Molecular Winds
+ lonized Winds
_ _ _ * BAL Winds
=» wide range of physical properties, v X-ray Winds

large range of distances from the
central SMBHSs (4 orders of magnitude)
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energetic winds
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Summary and Future

A new chapter in the study of BAL quasar outflows

4 Molecular Winds
lonized Winds
_ _ _ BAL Winds
=» wide range of physical properties, X-ray Winds

large range of distances from the
central SMBHSs (4 orders of magnitude)
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+ Choi et al. 2020, 2022a



Summary and Future

A new chapter in the study of BAL quasar outflows

4 Molecular Winds
lonized Winds
_ _ _ BAL Winds
=» wide range of physical properties, X-ray Winds

large range of distances from the
central SMBHSs (4 orders of magnitude)
=» more luminous quasars have more
energetic winds
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, with its unparalleled analysis
capabilities, is able to:

=» analyze any variety of BAL quasar = Low-z FeLoBALs

9 J1352+4239

spectra

=» investigate large samples of (Hi, Lo, 1
FeLo) BAL quasars! (e.g., 4MOST) logLsor lerg s

+ Choi et al. 2020, 2022a
+ Choi et al. in prep.



Extra



What else can SImBAL do?

Detailed physical properties of outflowing gas

-
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Outflow Properties and
Quasar Accretion Properties: Two Populations

Different Eddington Ratios and outflow properties
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