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Linear Inverse Problems
An inverse problem consist of finding x, a latent variable of
interest, given a noisy observation y.

y = Ax+ z
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Solving the Linear Inverse Problem
Traditional method

x

y

Credit: Morningstar et al. (2019)



Bayes’ theorem
The posterior is defined as

posterior︷ ︸︸ ︷
p(x | y) =

likelihood︷ ︸︸ ︷
p(y | x)

prior︷ ︸︸ ︷
pθ(x)
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Score-Based Modeling
Posterior

The score of the likelihood is all you need to sample from the
posterior.

∇x log p(x | y)︸ ︷︷ ︸
posterior

= ∇x log p(y | x)︸ ︷︷ ︸
likelihood

+∇x log pθ(x)︸ ︷︷ ︸
prior
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Learning the likelihood

Ground
Truth Posterior Samples



In Conclusion

We can do rigorous bayesian inference with highly accurate
priors and likelihoods learned from data in high-dimensional
spaces.
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