Posterior samples of source galaxies in strong gravitational lenses with score-based priors

Alexandre Adam

CRAQ May 9, 2023

An inverse problem consist of finding \mathbf{x} , a latent variable of interest, given a noisy observation \mathbf{y} .

An inverse problem consist of finding \mathbf{x} given a noisy observation \mathbf{y} .

An inverse problem consist of finding \mathbf{x} given a noisy observation \mathbf{y} .

An inverse problem consist of finding \mathbf{x} given a noisy observation \mathbf{y} .

Solving the Linear Inverse Problem Traditional method

Credit: Morningstar et al. (2019)

The posterior is defined as

The posterior is defined as

 $\frac{\text{Likelihood}}{\text{Simulator }}\checkmark$

The posterior is defined as

 $\begin{array}{c} \text{Likelihood} \\ \text{Simulator } \checkmark \\ \text{Noise statistics } \checkmark \end{array}$

The posterior is defined as

 $\begin{array}{c} \text{Likelihood} \\ \text{Simulator } \checkmark \\ \text{Noise statistics } \checkmark \end{array}$

Posterior

Prior

Sampling \times

Closed form \times

Target distribution

Sampling: follow the score

Score-Based Modeling Posterior

The score of the likelihood is all you need to sample from the posterior.

$$\underbrace{\mathbf{\nabla}_{\mathbf{x}} \log p(\mathbf{x} \mid \mathbf{y})}_{\text{posterior}} = \underbrace{\mathbf{\nabla}_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x})}_{\text{likelihood}} + \underbrace{\mathbf{\nabla}_{\mathbf{x}} \log p_{\theta}(\mathbf{x})}_{\text{prior}}$$

Ground Truth

Posterior samples

Posterior samples

Ground Truth Posterior samples

Ground Truth

Posterior samples

Posterior samples

Posterior samples

Learning the likelihood

Posterior Samples

In Conclusion

We can do rigorous bayesian inference with highly accurate priors and likelihoods learned from data in high-dimensional spaces.

In Conclusion

We can do rigorous bayesian inference with highly accurate priors and likelihoods learned from data in high-dimensional spaces.

Thank you

arXiv:2302.03046

arXiv:2211.03812