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Overview

Spatial Power Spectrum of the Photospheric Magnetic Field:
• Eliminating the vantage point effect
• Filling the polar data gaps
• Normalization of the spherical harmonic coefficients

Two-dipole Model:
• Justifying the two-dipole approximation of the photospheric field
• Derivation of the potential of two eccentric axial dipoles 
• Fitting the two-dipole model to observed harmonic coefficients

North-South Asymmetry:
• Is there a persistent north-south asymmetry during solar minima?
• What is the cause of the asymmetry?
• How does the photospheric asymmetry affect the coronal magnetic field 

and the interplanetary magnetic field at Earth?
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ABSTRACT

Context. During solar minima the spatial power spectrum of the photospheric magnetic field is dominated by the low-degree zonal
(axisymmetric; m = 0) harmonic components, reflecting the large polar coronal holes of unipolar magnetic field. However, measuring
polar fields is di�cult because of the unequal visibility of the two poles during most of the year and the small line-of-sight component
of the roughly radial field at high solar latitudes.
Aims. In this paper we derive the spatial power spectrum of the photospheric magnetic field in terms of the harmonic coe�cients
of the radial component (Br) as well as in terms of the harmonic coe�cients of the internal potential (known as Gauss coe�cients).
We calculate the zonal spatial power spectrum using Mount Wilson Observatory synoptic maps from 1995–1996, during the solar
minimum between solar cycles 22 and 23, and investigate how filling or not filling the polar data gaps a↵ects the zonal harmonic
coe�cients.
Methods. We eliminated the vantage point e↵ect by removing the highest 5� of the measured magnetic field and calculating the
latitudinal profile of the zonal median field over the two years, which ensured equal latitudinal data coverage of both solar hemispheres.
We then derived the zonal harmonic coe�cients using this latitudinal profile of Br.
Results. We find that when the polar data gaps are left unfilled, a strong artificial power above l = 8 is produced. Only the first five
zonal harmonic coe�cients can be considered reliable in this case. Therefore polar filling is essential to obtain a realistic spatial power
spectrum. Filling the polar gap with a constant (non-zero) value yields zonal harmonics that are reliable up to l = 9. We find that
the zonal octupole component contributes most to the total spatial power, more than the zonal dipole, even during the solar minimum
conditions. This di↵erence is seen more clearly in the case of polar filling. We also prove that the asymmetry of the polar fields during
this solar minimum is statistically significant.
Conclusions. Our results emphasize the importance of filling the polar data gaps in order to obtain a correct estimate of the spatial
power spectrum of the photospheric field. This helps in estimating the reliability of polar fields and the large-scale structure in synoptic
maps of di↵erent origin. Our results also verify the asymmetric nature of the polar fields, which is important for the heliospheric
magnetic field and for solar dynamo modeling.
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1. Introduction

The large-scale photospheric magnetic field is very closely
axisymmetric during solar minima with extended unipolar
regions (polar coronal holes) around the heliographic poles.
This is demonstrated in Fig. 1 by a Mount Wilson Observa-
tory (MWO) synoptic map of the radial magnetic field (Br)
for Carrington rotation (CR) 1910 (June 1996) during the solar
minimum between cycles 22 and 23. Except for a large bipo-
lar active region (AR) around the equator and a few smaller
ARs (some including sunspots), the background field is dom-
inated by a region of mixed polarity from �60� to 60� lati-
tude and the large polar coronal holes of uniform polarity. (We
note that the color scale is adjusted to the polar magnetic field,
not to the strong magnetic field of sunspots that can be several
orders of magnitude higher.) This map was calculated from the
original line-of-sight measurements of the photospheric mag-
netic field (Blos) under the assumption that the magnetic field
is radial on the solar surface so that Br = Blos/ sin ✓, where ✓
is the colatitude. The radial field assumption was first suggested

by Svalgaard et al. (1978), based on Wilcox Solar Observatory
(WSO) magnetograms using the Fe I line (525.02 nm). Evidence
that the photospheric magnetic field is approximately radial was
also found by Petrie & Patrikeeva (2009) and Gosain & Pevtsov
(2013). It is necessary to use this (or some other) assumption
about the orientation of the field because photospheric vector
magnetic field observations started only in the 2000s.

The photospheric field is most commonly assumed to be
radial when using the potential field source surface (PFSS)
model to calculate the potential (current-free) magnetic field in
the corona. The PFSS model also assumes the coronal field to
become radial at the source surface distance Rss, which is typi-
cally assumed to be at 2.5 solar radii (Wang & Sheeley 1992).

Since the line-of-sight component of a radial field
approaches zero toward the heliographic poles, measurements at
high latitudes become increasingly noisy and uncertain. There-
fore, the MWO synoptic maps, which are interpolated to a uni-
form heliographic longitude-latitude grid of 971 ⇥ 512, contain
missing values at the highest latitudes (see the white unfilled
polar areas in Fig. 1).

Article published by EDP Sciences A51, page 1 of 10

where Blos is the 
line-of-sight 
magnetic field 
component, and !
is the colatitude. 

Radial magnetic 
field assumption in 
the photosphere: 



Geomagnetism:

and        are the harmonic coefficients of the spherical harmonics expansion of 
the internal potential, also known as Gauss coefficients.

Neglecting external sources in the photosphere, the two coefficients are related as:

Solar Physics:

and      are the harmonic coefficients of the spherical harmonics expansion of 
the radial magnetic field component in the photosphere.

Definition of Harmonic Coefficients
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Fig. 1. Synoptic map of the MWO photospheric radial magnetic field
for CR 1910.

Since the ecliptic plane is tilted by 7.25� with respect to the
solar equator, the polar regions of the Sun are not equally visible
during most of the year. This is often referred to as the vantage
point or b0 angle problem, resulting in unequal polar data gaps
when the Earth is at northern or southern heliographic latitudes.
The radial magnetic field in Fig. 1 includes some dubious strong
opposite-polarity values at the northern and southern edges of
the measured synoptic map (dark blue spots at the northern edge
and yellow spots at the southern edge), which are not expected
in a unipolar coronal hole. These strong opposite-polarity val-
ues do not appear in the same locations in the next or previous
CR where the respective heliographic latitudes are better visible.
This indicates that these are erroneous values that arise from the
above mentioned observational di�culties close to the edge of
the visible solar disk.

In this paper, two di↵erent methods are used to treat the high-
latitude data gaps in the photospheric magnetic field. The polar
filling method uses a constant non-zero (positive or negative)
value to fill in the polar data gap and is called the “constant fill-
ing” method. The second method uses zeros in the polar gaps
and is hence called the “zero filling” method (also referred to as
no polar filling). The paper is organized as follows. The zonal
harmonic coe�cients are calculated from the latitudinal profile
of the radial magnetic field as described in Sect. 2. A method
to eliminate the vantage point e↵ect is presented in Sect. 3.
Section 4 discusses the e↵ect of polar filling on the zonal har-
monics of the photospheric magnetic field, while error estimates
of the zonal harmonic coe�cients are given in Sect. 5. The zonal
spatial power spectrum of the photospheric magnetic field during
solar minimum (1995–1996) is presented in Sect. 6. We discuss
the results in Sect. 7 and give our conclusions in Sect. 8.

2. Data and methods

2.1. Photospheric magnetic field data

In this study we use MWO photospheric synoptic maps of line-
of-sight magnetic field observations for CR 1892–1917, cov-
ering the solar minimum years of 1995–1996. MWO data are
given in a relatively high-resolution longitude-latitude grid of
971 ⇥ 512, which provides a uniform latitudinal resolution of
0.35� at all latitudes. The photospheric data from other stations
are given in a longitude – sine-latitude grid, which makes the

cell size constant but leads to a decreasing latitudinal resolution
toward the poles. As we show here, su�cient resolution at high
latitudes is essential for determining the higher-degree zonal har-
monic coe�cients of the photospheric magnetic field. Moreover,
although the Kitt Peak (KP) magnetograms have much higher
resolution (1.1 arcsec) at this time than the MWO magnetograms
(12.5 or 20 arcsec), we use MWO data because the KP data are
known to su↵er from errors (Harvey & Munoz-Jaramillo 2015).

Observations of large-scale photospheric magnetic fields
(full-disk magnetograms) started on Mount Wilson in the late
1950s and continued until January 2013. Digital calibrated data
are available for 1974–2013 (see, e.g., Howard et al. (1983),
Ulrich et al. (2002), and references therein). MWO observations
started using a Babcock-type magnetograph, and there were sev-
eral instrument updates, the most significant in 1982, 1994, and
1996. These updates allowed using other spectral lines as well
and observing spectral lines with better spectral resolution. They
typically observed several fastgrams (aperture size 20 arcsec)
and at least one slowgram (aperture size 12.5 arcsec) per day.
Synoptic maps are constructed from full-disk observations using
all the available data.

Polar data gaps are not filled in the MWO data, which allows
us to study the e↵ect of di↵erent polar filling methods on the
zonal harmonic coe�cients. However, it should be noted that
the MWO synoptic maps are interpolated to the given longitude-
latitude grid from the original observations, which may not have
the same resolution and accuracy at all locations. Therefore, we
need to empirically determine the highest northern/southern lat-
itude where the measurements are still reliable.

2.2. Definition of harmonic coefficients

The harmonic coe�cients gm
l and hm

l are defined di↵erently in
solar physics and in geomagnetism, which might be confusing
for experts of either field. In this section, we aim to clarify these
two di↵erent definitions.

The coronal magnetic field is commonly estimated with the
PFSS model (Wang & Sheeley 1992) with a source surface at a
radius of Rss, where the coronal magnetic field becomes radial.
The magnetic potential arises both from internal sources inside
the inner boundary of the photospheric radius R0 and external
sources outside the source surface. The solution of the PFSS
model for the radial magnetic field Br gives

Br(r, ✓, �) = �
@ 

@r

=

1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�)

✓R0

r

◆l+2

⇥
2
666664l + 1 + l

 
r

Rss

!2l+13777775

2
666664l + 1 + l

 
R0

Rss

!2l+13777775
�1

, (1)

where is the sum of the internal and external potentials, ✓ is the
colatitude, � is the longitude, Pm

l is the Schmidt semi-normalized
associated Legendre function, and l and m are the degree and
azimuthal order of the spherical harmonics, respectively. In the
photosphere (r = R0), Br reduces to

Br(R0, ✓, �) =
1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�). (2)

In solar physics, gm
l and hm

l are therefore the harmonic coef-
ficients of the spherical harmonics expansion of the radial
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magnetic field component in the photosphere. These harmonic
coe�cients are related to g0ml and h0ml , the harmonic coe�cients
of the internal potential  I,

 I(r, ✓, �) = R0

1X

l=0

✓R0

r

◆l+1 lX

m=0

Pm
l (cos ✓)(g0ml cos m� + h0ml sin m�), (3)

through the following equations:

gm
l = (l + 1)g0ml

2
6666641 +

l
l + 1

 
R0

Rss

!2l+13777775 , (4)

hm
l = (l + 1)h0ml

2
6666641 +

l
l + 1

 
R0

Rss

!2l+13777775 . (5)

We note that in these harmonic coe�cients, the terms (l + 1)g0ml
and (l + 1)h0ml come from internal sources, while the term pro-
portional to l/(l+1)(R0/Rss)2l+1 is of external origin. In geomag-
netism, however, the notations gm

l and hm
l are generally used for

the harmonic coe�cients of the internal potential (Eq. (3)), also
known as Gauss coe�cients. To be consistent with earlier liter-
ature on solar and heliospheric physics, we continue to use gm

l
and hm

l for the harmonic coe�cients of Br and g0ml and h0ml for
the Gauss coe�cients of  I.

The radial magnetic field in the photosphere arising from
internal sources alone can be obtained from  I as follows:

Br(R0, ✓, �) = �
@ I

@r

=

1X

l=0

(l + 1)
lX

m=0

Pm
l (cos ✓)(g0ml cos m� + h0ml sin m�). (6)

It can be readily seen in Eqs. (4) and (5) that gm
l and hm

l approach
(l + 1)g0ml and (l + 1)h0ml , respectively, as l approaches infin-
ity, which means that the external sources become negligible in
the photospheric magnetic field for high values of l. Only the
lowest-degree harmonics of the photospheric field are slightly
a↵ected by external sources. For Rss = 2.5R0, the relative con-
tribution of external sources to the dipole component (l = 1) of
the photospheric magnetic field is only 3.2%. Considering the
large uncertainty of the measured photospheric magnetic field at
high heliographic latitudes, the contribution of external sources
to the photospheric magnetic field can be safely neglected. In
this case, the photospheric magnetic field comes purely from the
internal potential, and the observed radial magnetic field is given
by Eq. (6) (or Eq. (2) with coe�cients including only the internal
contribution).

Multiplying both sides of Eq. (6) by the spherical harmon-
ics Pm

l (cos ✓) cos m� and Pm
l (cos ✓) sin m� and integrating over

the solar surface, we obtain the solution for the unknown Gauss
coe�cients g0ml and h0ml , respectively (Backus et al. 1996):

2⇡Z

0

d�
⇡Z

0

sin ✓d✓Br(R0, ✓, �)Pm
l (cos ✓)

"
cos m�
sin m�

#
=

4⇡(l + 1)
2l + 1

"
g0ml
h0ml

#
. (7)

Here we made use of the following orthogonality relationships
of the Schmidt semi-normalized spherical harmonics:

2⇡Z

0

d�
⇡Z

0

sin ✓d✓Pm
l (cos ✓)

"
cos m�
sin m�

#
Pm0

l0 (cos ✓
"
cos m0�
sin m0�

#

=
4⇡

2l + 1
�ll0�mm0 (8)

and
2⇡Z

0

d�
⇡Z

0

sin ✓d✓Pm
l (cos ✓) cos m�Pm0

l0 (cos ✓) sin m0� = 0, (9)

where �i j is the Kronecker delta.
For photospheric magnetic field data with a longitude–

latitude grid of N� ⇥ N✓, the solid angle of a grid cell �⌦ =
sin ✓�✓�� decreases with latitude, where �✓ = ⇡/N✓ and �� =
2⇡/N�. The discrete representation of Eq. (7) then yields the
Gauss coe�cients as follows:
"
g0ml
h0ml

#
=
⇡

2
2l + 1

N�N✓(l + 1)

N✓X

i=1

N�X

j=1

Blos
i j Pm

l (cos ✓i)
"
cos m� j
sin m� j

#
. (10)

The zonal (m = 0) Gauss coe�cients g00l can then be expressed as

g00l =
⇡

2
2l + 1

N✓(l + 1)

N✓X

i=1

hBlos
i iP0

l (cos ✓i), (11)

where hBlos
i i is the zonal mean line-of-sight magnetic field at the

colatitude of ✓i.
In order to exclude outliers (e.g., newly emerged sunspots

with a magnetic field orders of magnitude higher than the back-
ground photospheric field), we use the zonal median instead of
the zonal mean in Eq. (11) to calculate the first 24 zonal Gauss
coe�cients of the internal potential. The latitudinal profiles can
be reconstructed from the first 24 zonal harmonics as follows (cf.
Eqs. (2) and (6)):

Br(✓) =
24X

l=1

(l + 1)g00l P0
l (cos ✓) =

24X

l=1

g0
l P0

l (cos ✓). (12)

The reconstruction based on the first 24 harmonics is quite su�-
cient when studying the large-scale structure of the photospheric
field.

2.3. Definition of spatial power spectrum

The main challenge in defining the spatial power spectrum of
the photospheric magnetic field is to find the correct normaliza-
tion for the harmonic coe�cients. Any real function f (✓, �) can
be expanded in terms of Schmidt semi-normalized spherical har-
monics as

f (✓, �) =
1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�), (13)

in analogy with Eq. (2). As already noted above, the spherical
harmonics form a complete orthogonal system under integra-
tion over the unit sphere (cf. Eqs. (8) and (9)). It is in fact a
generalized Fourier series that transforms a bivariate function
f (✓, �) from the two-dimensional domain [✓, �] (unit sphere)
into the two-dimensional domain of [l,m]. In this section, we
derive the generalized Parseval theorem for the Schmidt semi-
normalized spherical harmonics expansion and define the corre-
sponding spatial power spectrum.

The total power of f (✓, �) is defined as the integral of the
function squared, divided by the area of its domain:

1
4⇡

Z
f 2d⌦ =

1
4⇡

2⇡Z

0

d�
⇡Z

0

sin ✓d✓
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Fig. 1. Synoptic map of the MWO photospheric radial magnetic field
for CR 1910.

Since the ecliptic plane is tilted by 7.25� with respect to the
solar equator, the polar regions of the Sun are not equally visible
during most of the year. This is often referred to as the vantage
point or b0 angle problem, resulting in unequal polar data gaps
when the Earth is at northern or southern heliographic latitudes.
The radial magnetic field in Fig. 1 includes some dubious strong
opposite-polarity values at the northern and southern edges of
the measured synoptic map (dark blue spots at the northern edge
and yellow spots at the southern edge), which are not expected
in a unipolar coronal hole. These strong opposite-polarity val-
ues do not appear in the same locations in the next or previous
CR where the respective heliographic latitudes are better visible.
This indicates that these are erroneous values that arise from the
above mentioned observational di�culties close to the edge of
the visible solar disk.

In this paper, two di↵erent methods are used to treat the high-
latitude data gaps in the photospheric magnetic field. The polar
filling method uses a constant non-zero (positive or negative)
value to fill in the polar data gap and is called the “constant fill-
ing” method. The second method uses zeros in the polar gaps
and is hence called the “zero filling” method (also referred to as
no polar filling). The paper is organized as follows. The zonal
harmonic coe�cients are calculated from the latitudinal profile
of the radial magnetic field as described in Sect. 2. A method
to eliminate the vantage point e↵ect is presented in Sect. 3.
Section 4 discusses the e↵ect of polar filling on the zonal har-
monics of the photospheric magnetic field, while error estimates
of the zonal harmonic coe�cients are given in Sect. 5. The zonal
spatial power spectrum of the photospheric magnetic field during
solar minimum (1995–1996) is presented in Sect. 6. We discuss
the results in Sect. 7 and give our conclusions in Sect. 8.

2. Data and methods

2.1. Photospheric magnetic field data

In this study we use MWO photospheric synoptic maps of line-
of-sight magnetic field observations for CR 1892–1917, cov-
ering the solar minimum years of 1995–1996. MWO data are
given in a relatively high-resolution longitude-latitude grid of
971 ⇥ 512, which provides a uniform latitudinal resolution of
0.35� at all latitudes. The photospheric data from other stations
are given in a longitude – sine-latitude grid, which makes the

cell size constant but leads to a decreasing latitudinal resolution
toward the poles. As we show here, su�cient resolution at high
latitudes is essential for determining the higher-degree zonal har-
monic coe�cients of the photospheric magnetic field. Moreover,
although the Kitt Peak (KP) magnetograms have much higher
resolution (1.1 arcsec) at this time than the MWO magnetograms
(12.5 or 20 arcsec), we use MWO data because the KP data are
known to su↵er from errors (Harvey & Munoz-Jaramillo 2015).

Observations of large-scale photospheric magnetic fields
(full-disk magnetograms) started on Mount Wilson in the late
1950s and continued until January 2013. Digital calibrated data
are available for 1974–2013 (see, e.g., Howard et al. (1983),
Ulrich et al. (2002), and references therein). MWO observations
started using a Babcock-type magnetograph, and there were sev-
eral instrument updates, the most significant in 1982, 1994, and
1996. These updates allowed using other spectral lines as well
and observing spectral lines with better spectral resolution. They
typically observed several fastgrams (aperture size 20 arcsec)
and at least one slowgram (aperture size 12.5 arcsec) per day.
Synoptic maps are constructed from full-disk observations using
all the available data.

Polar data gaps are not filled in the MWO data, which allows
us to study the e↵ect of di↵erent polar filling methods on the
zonal harmonic coe�cients. However, it should be noted that
the MWO synoptic maps are interpolated to the given longitude-
latitude grid from the original observations, which may not have
the same resolution and accuracy at all locations. Therefore, we
need to empirically determine the highest northern/southern lat-
itude where the measurements are still reliable.

2.2. Definition of harmonic coefficients

The harmonic coe�cients gm
l and hm

l are defined di↵erently in
solar physics and in geomagnetism, which might be confusing
for experts of either field. In this section, we aim to clarify these
two di↵erent definitions.

The coronal magnetic field is commonly estimated with the
PFSS model (Wang & Sheeley 1992) with a source surface at a
radius of Rss, where the coronal magnetic field becomes radial.
The magnetic potential arises both from internal sources inside
the inner boundary of the photospheric radius R0 and external
sources outside the source surface. The solution of the PFSS
model for the radial magnetic field Br gives

Br(r, ✓, �) = �
@ 

@r

=

1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�)

✓R0

r

◆l+2

⇥
2
666664l + 1 + l

 
r

Rss

!2l+13777775

2
666664l + 1 + l

 
R0

Rss

!2l+13777775
�1

, (1)

where is the sum of the internal and external potentials, ✓ is the
colatitude, � is the longitude, Pm

l is the Schmidt semi-normalized
associated Legendre function, and l and m are the degree and
azimuthal order of the spherical harmonics, respectively. In the
photosphere (r = R0), Br reduces to

Br(R0, ✓, �) =
1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�). (2)

In solar physics, gm
l and hm

l are therefore the harmonic coef-
ficients of the spherical harmonics expansion of the radial
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magnetic field component in the photosphere. These harmonic
coe�cients are related to g0ml and h0ml , the harmonic coe�cients
of the internal potential  I,

 I(r, ✓, �) = R0

1X

l=0

✓R0

r

◆l+1 lX

m=0

Pm
l (cos ✓)(g0ml cos m� + h0ml sin m�), (3)

through the following equations:

gm
l = (l + 1)g0ml

2
6666641 +

l
l + 1

 
R0

Rss

!2l+13777775 , (4)

hm
l = (l + 1)h0ml

2
6666641 +

l
l + 1

 
R0

Rss

!2l+13777775 . (5)

We note that in these harmonic coe�cients, the terms (l + 1)g0ml
and (l + 1)h0ml come from internal sources, while the term pro-
portional to l/(l+1)(R0/Rss)2l+1 is of external origin. In geomag-
netism, however, the notations gm

l and hm
l are generally used for

the harmonic coe�cients of the internal potential (Eq. (3)), also
known as Gauss coe�cients. To be consistent with earlier liter-
ature on solar and heliospheric physics, we continue to use gm

l
and hm

l for the harmonic coe�cients of Br and g0ml and h0ml for
the Gauss coe�cients of  I.

The radial magnetic field in the photosphere arising from
internal sources alone can be obtained from  I as follows:

Br(R0, ✓, �) = �
@ I

@r

=

1X

l=0

(l + 1)
lX

m=0

Pm
l (cos ✓)(g0ml cos m� + h0ml sin m�). (6)

It can be readily seen in Eqs. (4) and (5) that gm
l and hm

l approach
(l + 1)g0ml and (l + 1)h0ml , respectively, as l approaches infin-
ity, which means that the external sources become negligible in
the photospheric magnetic field for high values of l. Only the
lowest-degree harmonics of the photospheric field are slightly
a↵ected by external sources. For Rss = 2.5R0, the relative con-
tribution of external sources to the dipole component (l = 1) of
the photospheric magnetic field is only 3.2%. Considering the
large uncertainty of the measured photospheric magnetic field at
high heliographic latitudes, the contribution of external sources
to the photospheric magnetic field can be safely neglected. In
this case, the photospheric magnetic field comes purely from the
internal potential, and the observed radial magnetic field is given
by Eq. (6) (or Eq. (2) with coe�cients including only the internal
contribution).

Multiplying both sides of Eq. (6) by the spherical harmon-
ics Pm

l (cos ✓) cos m� and Pm
l (cos ✓) sin m� and integrating over

the solar surface, we obtain the solution for the unknown Gauss
coe�cients g0ml and h0ml , respectively (Backus et al. 1996):

2⇡Z
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l (cos ✓)
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cos m�
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=
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. (7)

Here we made use of the following orthogonality relationships
of the Schmidt semi-normalized spherical harmonics:
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and
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l0 (cos ✓) sin m0� = 0, (9)

where �i j is the Kronecker delta.
For photospheric magnetic field data with a longitude–

latitude grid of N� ⇥ N✓, the solid angle of a grid cell �⌦ =
sin ✓�✓�� decreases with latitude, where �✓ = ⇡/N✓ and �� =
2⇡/N�. The discrete representation of Eq. (7) then yields the
Gauss coe�cients as follows:
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The zonal (m = 0) Gauss coe�cients g00l can then be expressed as
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where hBlos
i i is the zonal mean line-of-sight magnetic field at the

colatitude of ✓i.
In order to exclude outliers (e.g., newly emerged sunspots

with a magnetic field orders of magnitude higher than the back-
ground photospheric field), we use the zonal median instead of
the zonal mean in Eq. (11) to calculate the first 24 zonal Gauss
coe�cients of the internal potential. The latitudinal profiles can
be reconstructed from the first 24 zonal harmonics as follows (cf.
Eqs. (2) and (6)):
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The reconstruction based on the first 24 harmonics is quite su�-
cient when studying the large-scale structure of the photospheric
field.

2.3. Definition of spatial power spectrum

The main challenge in defining the spatial power spectrum of
the photospheric magnetic field is to find the correct normaliza-
tion for the harmonic coe�cients. Any real function f (✓, �) can
be expanded in terms of Schmidt semi-normalized spherical har-
monics as

f (✓, �) =
1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�), (13)

in analogy with Eq. (2). As already noted above, the spherical
harmonics form a complete orthogonal system under integra-
tion over the unit sphere (cf. Eqs. (8) and (9)). It is in fact a
generalized Fourier series that transforms a bivariate function
f (✓, �) from the two-dimensional domain [✓, �] (unit sphere)
into the two-dimensional domain of [l,m]. In this section, we
derive the generalized Parseval theorem for the Schmidt semi-
normalized spherical harmonics expansion and define the corre-
sponding spatial power spectrum.

The total power of f (✓, �) is defined as the integral of the
function squared, divided by the area of its domain:
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Fig. 1. Synoptic map of the MWO photospheric radial magnetic field
for CR 1910.

Since the ecliptic plane is tilted by 7.25� with respect to the
solar equator, the polar regions of the Sun are not equally visible
during most of the year. This is often referred to as the vantage
point or b0 angle problem, resulting in unequal polar data gaps
when the Earth is at northern or southern heliographic latitudes.
The radial magnetic field in Fig. 1 includes some dubious strong
opposite-polarity values at the northern and southern edges of
the measured synoptic map (dark blue spots at the northern edge
and yellow spots at the southern edge), which are not expected
in a unipolar coronal hole. These strong opposite-polarity val-
ues do not appear in the same locations in the next or previous
CR where the respective heliographic latitudes are better visible.
This indicates that these are erroneous values that arise from the
above mentioned observational di�culties close to the edge of
the visible solar disk.

In this paper, two di↵erent methods are used to treat the high-
latitude data gaps in the photospheric magnetic field. The polar
filling method uses a constant non-zero (positive or negative)
value to fill in the polar data gap and is called the “constant fill-
ing” method. The second method uses zeros in the polar gaps
and is hence called the “zero filling” method (also referred to as
no polar filling). The paper is organized as follows. The zonal
harmonic coe�cients are calculated from the latitudinal profile
of the radial magnetic field as described in Sect. 2. A method
to eliminate the vantage point e↵ect is presented in Sect. 3.
Section 4 discusses the e↵ect of polar filling on the zonal har-
monics of the photospheric magnetic field, while error estimates
of the zonal harmonic coe�cients are given in Sect. 5. The zonal
spatial power spectrum of the photospheric magnetic field during
solar minimum (1995–1996) is presented in Sect. 6. We discuss
the results in Sect. 7 and give our conclusions in Sect. 8.

2. Data and methods

2.1. Photospheric magnetic field data

In this study we use MWO photospheric synoptic maps of line-
of-sight magnetic field observations for CR 1892–1917, cov-
ering the solar minimum years of 1995–1996. MWO data are
given in a relatively high-resolution longitude-latitude grid of
971 ⇥ 512, which provides a uniform latitudinal resolution of
0.35� at all latitudes. The photospheric data from other stations
are given in a longitude – sine-latitude grid, which makes the

cell size constant but leads to a decreasing latitudinal resolution
toward the poles. As we show here, su�cient resolution at high
latitudes is essential for determining the higher-degree zonal har-
monic coe�cients of the photospheric magnetic field. Moreover,
although the Kitt Peak (KP) magnetograms have much higher
resolution (1.1 arcsec) at this time than the MWO magnetograms
(12.5 or 20 arcsec), we use MWO data because the KP data are
known to su↵er from errors (Harvey & Munoz-Jaramillo 2015).

Observations of large-scale photospheric magnetic fields
(full-disk magnetograms) started on Mount Wilson in the late
1950s and continued until January 2013. Digital calibrated data
are available for 1974–2013 (see, e.g., Howard et al. (1983),
Ulrich et al. (2002), and references therein). MWO observations
started using a Babcock-type magnetograph, and there were sev-
eral instrument updates, the most significant in 1982, 1994, and
1996. These updates allowed using other spectral lines as well
and observing spectral lines with better spectral resolution. They
typically observed several fastgrams (aperture size 20 arcsec)
and at least one slowgram (aperture size 12.5 arcsec) per day.
Synoptic maps are constructed from full-disk observations using
all the available data.

Polar data gaps are not filled in the MWO data, which allows
us to study the e↵ect of di↵erent polar filling methods on the
zonal harmonic coe�cients. However, it should be noted that
the MWO synoptic maps are interpolated to the given longitude-
latitude grid from the original observations, which may not have
the same resolution and accuracy at all locations. Therefore, we
need to empirically determine the highest northern/southern lat-
itude where the measurements are still reliable.

2.2. Definition of harmonic coefficients

The harmonic coe�cients gm
l and hm

l are defined di↵erently in
solar physics and in geomagnetism, which might be confusing
for experts of either field. In this section, we aim to clarify these
two di↵erent definitions.

The coronal magnetic field is commonly estimated with the
PFSS model (Wang & Sheeley 1992) with a source surface at a
radius of Rss, where the coronal magnetic field becomes radial.
The magnetic potential arises both from internal sources inside
the inner boundary of the photospheric radius R0 and external
sources outside the source surface. The solution of the PFSS
model for the radial magnetic field Br gives

Br(r, ✓, �) = �
@ 
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, (1)

where is the sum of the internal and external potentials, ✓ is the
colatitude, � is the longitude, Pm

l is the Schmidt semi-normalized
associated Legendre function, and l and m are the degree and
azimuthal order of the spherical harmonics, respectively. In the
photosphere (r = R0), Br reduces to

Br(R0, ✓, �) =
1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�). (2)

In solar physics, gm
l and hm

l are therefore the harmonic coef-
ficients of the spherical harmonics expansion of the radial
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magnetic field component in the photosphere. These harmonic
coe�cients are related to g0ml and h0ml , the harmonic coe�cients
of the internal potential  I,

 I(r, ✓, �) = R0

1X

l=0

✓R0

r

◆l+1 lX

m=0

Pm
l (cos ✓)(g0ml cos m� + h0ml sin m�), (3)

through the following equations:
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l = (l + 1)g0ml
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We note that in these harmonic coe�cients, the terms (l + 1)g0ml
and (l + 1)h0ml come from internal sources, while the term pro-
portional to l/(l+1)(R0/Rss)2l+1 is of external origin. In geomag-
netism, however, the notations gm

l and hm
l are generally used for

the harmonic coe�cients of the internal potential (Eq. (3)), also
known as Gauss coe�cients. To be consistent with earlier liter-
ature on solar and heliospheric physics, we continue to use gm

l
and hm

l for the harmonic coe�cients of Br and g0ml and h0ml for
the Gauss coe�cients of  I.

The radial magnetic field in the photosphere arising from
internal sources alone can be obtained from  I as follows:

Br(R0, ✓, �) = �
@ I

@r

=

1X

l=0

(l + 1)
lX

m=0

Pm
l (cos ✓)(g0ml cos m� + h0ml sin m�). (6)

It can be readily seen in Eqs. (4) and (5) that gm
l and hm

l approach
(l + 1)g0ml and (l + 1)h0ml , respectively, as l approaches infin-
ity, which means that the external sources become negligible in
the photospheric magnetic field for high values of l. Only the
lowest-degree harmonics of the photospheric field are slightly
a↵ected by external sources. For Rss = 2.5R0, the relative con-
tribution of external sources to the dipole component (l = 1) of
the photospheric magnetic field is only 3.2%. Considering the
large uncertainty of the measured photospheric magnetic field at
high heliographic latitudes, the contribution of external sources
to the photospheric magnetic field can be safely neglected. In
this case, the photospheric magnetic field comes purely from the
internal potential, and the observed radial magnetic field is given
by Eq. (6) (or Eq. (2) with coe�cients including only the internal
contribution).

Multiplying both sides of Eq. (6) by the spherical harmon-
ics Pm

l (cos ✓) cos m� and Pm
l (cos ✓) sin m� and integrating over

the solar surface, we obtain the solution for the unknown Gauss
coe�cients g0ml and h0ml , respectively (Backus et al. 1996):
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Here we made use of the following orthogonality relationships
of the Schmidt semi-normalized spherical harmonics:
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where �i j is the Kronecker delta.
For photospheric magnetic field data with a longitude–

latitude grid of N� ⇥ N✓, the solid angle of a grid cell �⌦ =
sin ✓�✓�� decreases with latitude, where �✓ = ⇡/N✓ and �� =
2⇡/N�. The discrete representation of Eq. (7) then yields the
Gauss coe�cients as follows:
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The zonal (m = 0) Gauss coe�cients g00l can then be expressed as

g00l =
⇡

2
2l + 1

N✓(l + 1)
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i iP0

l (cos ✓i), (11)

where hBlos
i i is the zonal mean line-of-sight magnetic field at the

colatitude of ✓i.
In order to exclude outliers (e.g., newly emerged sunspots

with a magnetic field orders of magnitude higher than the back-
ground photospheric field), we use the zonal median instead of
the zonal mean in Eq. (11) to calculate the first 24 zonal Gauss
coe�cients of the internal potential. The latitudinal profiles can
be reconstructed from the first 24 zonal harmonics as follows (cf.
Eqs. (2) and (6)):

Br(✓) =
24X

l=1

(l + 1)g00l P0
l (cos ✓) =

24X

l=1

g0
l P0

l (cos ✓). (12)

The reconstruction based on the first 24 harmonics is quite su�-
cient when studying the large-scale structure of the photospheric
field.

2.3. Definition of spatial power spectrum

The main challenge in defining the spatial power spectrum of
the photospheric magnetic field is to find the correct normaliza-
tion for the harmonic coe�cients. Any real function f (✓, �) can
be expanded in terms of Schmidt semi-normalized spherical har-
monics as

f (✓, �) =
1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�), (13)

in analogy with Eq. (2). As already noted above, the spherical
harmonics form a complete orthogonal system under integra-
tion over the unit sphere (cf. Eqs. (8) and (9)). It is in fact a
generalized Fourier series that transforms a bivariate function
f (✓, �) from the two-dimensional domain [✓, �] (unit sphere)
into the two-dimensional domain of [l,m]. In this section, we
derive the generalized Parseval theorem for the Schmidt semi-
normalized spherical harmonics expansion and define the corre-
sponding spatial power spectrum.

The total power of f (✓, �) is defined as the integral of the
function squared, divided by the area of its domain:
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magnetic field component in the photosphere. These harmonic
coe�cients are related to g0ml and h0ml , the harmonic coe�cients
of the internal potential  I,

 I(r, ✓, �) = R0
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through the following equations:

gm
l = (l + 1)g0ml

2
6666641 +

l
l + 1

 
R0

Rss

!2l+13777775 , (4)

hm
l = (l + 1)h0ml

2
6666641 +

l
l + 1

 
R0

Rss

!2l+13777775 . (5)

We note that in these harmonic coe�cients, the terms (l + 1)g0ml
and (l + 1)h0ml come from internal sources, while the term pro-
portional to l/(l+1)(R0/Rss)2l+1 is of external origin. In geomag-
netism, however, the notations gm

l and hm
l are generally used for

the harmonic coe�cients of the internal potential (Eq. (3)), also
known as Gauss coe�cients. To be consistent with earlier liter-
ature on solar and heliospheric physics, we continue to use gm

l
and hm

l for the harmonic coe�cients of Br and g0ml and h0ml for
the Gauss coe�cients of  I.

The radial magnetic field in the photosphere arising from
internal sources alone can be obtained from  I as follows:
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It can be readily seen in Eqs. (4) and (5) that gm
l and hm

l approach
(l + 1)g0ml and (l + 1)h0ml , respectively, as l approaches infin-
ity, which means that the external sources become negligible in
the photospheric magnetic field for high values of l. Only the
lowest-degree harmonics of the photospheric field are slightly
a↵ected by external sources. For Rss = 2.5R0, the relative con-
tribution of external sources to the dipole component (l = 1) of
the photospheric magnetic field is only 3.2%. Considering the
large uncertainty of the measured photospheric magnetic field at
high heliographic latitudes, the contribution of external sources
to the photospheric magnetic field can be safely neglected. In
this case, the photospheric magnetic field comes purely from the
internal potential, and the observed radial magnetic field is given
by Eq. (6) (or Eq. (2) with coe�cients including only the internal
contribution).

Multiplying both sides of Eq. (6) by the spherical harmon-
ics Pm

l (cos ✓) cos m� and Pm
l (cos ✓) sin m� and integrating over

the solar surface, we obtain the solution for the unknown Gauss
coe�cients g0ml and h0ml , respectively (Backus et al. 1996):
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Here we made use of the following orthogonality relationships
of the Schmidt semi-normalized spherical harmonics:
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where �i j is the Kronecker delta.
For photospheric magnetic field data with a longitude–

latitude grid of N� ⇥ N✓, the solid angle of a grid cell �⌦ =
sin ✓�✓�� decreases with latitude, where �✓ = ⇡/N✓ and �� =
2⇡/N�. The discrete representation of Eq. (7) then yields the
Gauss coe�cients as follows:
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The zonal (m = 0) Gauss coe�cients g00l can then be expressed as

g00l =
⇡
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where hBlos
i i is the zonal mean line-of-sight magnetic field at the

colatitude of ✓i.
In order to exclude outliers (e.g., newly emerged sunspots

with a magnetic field orders of magnitude higher than the back-
ground photospheric field), we use the zonal median instead of
the zonal mean in Eq. (11) to calculate the first 24 zonal Gauss
coe�cients of the internal potential. The latitudinal profiles can
be reconstructed from the first 24 zonal harmonics as follows (cf.
Eqs. (2) and (6)):
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The reconstruction based on the first 24 harmonics is quite su�-
cient when studying the large-scale structure of the photospheric
field.

2.3. Definition of spatial power spectrum

The main challenge in defining the spatial power spectrum of
the photospheric magnetic field is to find the correct normaliza-
tion for the harmonic coe�cients. Any real function f (✓, �) can
be expanded in terms of Schmidt semi-normalized spherical har-
monics as

f (✓, �) =
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in analogy with Eq. (2). As already noted above, the spherical
harmonics form a complete orthogonal system under integra-
tion over the unit sphere (cf. Eqs. (8) and (9)). It is in fact a
generalized Fourier series that transforms a bivariate function
f (✓, �) from the two-dimensional domain [✓, �] (unit sphere)
into the two-dimensional domain of [l,m]. In this section, we
derive the generalized Parseval theorem for the Schmidt semi-
normalized spherical harmonics expansion and define the corre-
sponding spatial power spectrum.

The total power of f (✓, �) is defined as the integral of the
function squared, divided by the area of its domain:
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magnetic field component in the photosphere. These harmonic
coe�cients are related to g0ml and h0ml , the harmonic coe�cients
of the internal potential  I,

 I(r, ✓, �) = R0

1X

l=0

✓R0

r

◆l+1 lX

m=0

Pm
l (cos ✓)(g0ml cos m� + h0ml sin m�), (3)

through the following equations:

gm
l = (l + 1)g0ml

2
6666641 +

l
l + 1

 
R0

Rss

!2l+13777775 , (4)

hm
l = (l + 1)h0ml

2
6666641 +

l
l + 1

 
R0

Rss

!2l+13777775 . (5)

We note that in these harmonic coe�cients, the terms (l + 1)g0ml
and (l + 1)h0ml come from internal sources, while the term pro-
portional to l/(l+1)(R0/Rss)2l+1 is of external origin. In geomag-
netism, however, the notations gm

l and hm
l are generally used for

the harmonic coe�cients of the internal potential (Eq. (3)), also
known as Gauss coe�cients. To be consistent with earlier liter-
ature on solar and heliospheric physics, we continue to use gm

l
and hm

l for the harmonic coe�cients of Br and g0ml and h0ml for
the Gauss coe�cients of  I.

The radial magnetic field in the photosphere arising from
internal sources alone can be obtained from  I as follows:
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It can be readily seen in Eqs. (4) and (5) that gm
l and hm

l approach
(l + 1)g0ml and (l + 1)h0ml , respectively, as l approaches infin-
ity, which means that the external sources become negligible in
the photospheric magnetic field for high values of l. Only the
lowest-degree harmonics of the photospheric field are slightly
a↵ected by external sources. For Rss = 2.5R0, the relative con-
tribution of external sources to the dipole component (l = 1) of
the photospheric magnetic field is only 3.2%. Considering the
large uncertainty of the measured photospheric magnetic field at
high heliographic latitudes, the contribution of external sources
to the photospheric magnetic field can be safely neglected. In
this case, the photospheric magnetic field comes purely from the
internal potential, and the observed radial magnetic field is given
by Eq. (6) (or Eq. (2) with coe�cients including only the internal
contribution).

Multiplying both sides of Eq. (6) by the spherical harmon-
ics Pm

l (cos ✓) cos m� and Pm
l (cos ✓) sin m� and integrating over

the solar surface, we obtain the solution for the unknown Gauss
coe�cients g0ml and h0ml , respectively (Backus et al. 1996):
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of the Schmidt semi-normalized spherical harmonics:
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The zonal (m = 0) Gauss coe�cients g00l can then be expressed as
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where hBlos
i i is the zonal mean line-of-sight magnetic field at the

colatitude of ✓i.
In order to exclude outliers (e.g., newly emerged sunspots

with a magnetic field orders of magnitude higher than the back-
ground photospheric field), we use the zonal median instead of
the zonal mean in Eq. (11) to calculate the first 24 zonal Gauss
coe�cients of the internal potential. The latitudinal profiles can
be reconstructed from the first 24 zonal harmonics as follows (cf.
Eqs. (2) and (6)):

Br(✓) =
24X

l=1

(l + 1)g00l P0
l (cos ✓) =

24X

l=1

g0
l P0

l (cos ✓). (12)

The reconstruction based on the first 24 harmonics is quite su�-
cient when studying the large-scale structure of the photospheric
field.

2.3. Definition of spatial power spectrum

The main challenge in defining the spatial power spectrum of
the photospheric magnetic field is to find the correct normaliza-
tion for the harmonic coe�cients. Any real function f (✓, �) can
be expanded in terms of Schmidt semi-normalized spherical har-
monics as

f (✓, �) =
1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�), (13)

in analogy with Eq. (2). As already noted above, the spherical
harmonics form a complete orthogonal system under integra-
tion over the unit sphere (cf. Eqs. (8) and (9)). It is in fact a
generalized Fourier series that transforms a bivariate function
f (✓, �) from the two-dimensional domain [✓, �] (unit sphere)
into the two-dimensional domain of [l,m]. In this section, we
derive the generalized Parseval theorem for the Schmidt semi-
normalized spherical harmonics expansion and define the corre-
sponding spatial power spectrum.

The total power of f (✓, �) is defined as the integral of the
function squared, divided by the area of its domain:
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Calculating the Zonal Gauss Coefficients
From Latitudinal Profiles

For photospheric magnetic field data with a longitude-latitude grid of N!�N", 
the zonal (m = 0) Gauss coefficients can be expressed as
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magnetic field component in the photosphere. These harmonic
coe�cients are related to g0ml and h0ml , the harmonic coe�cients
of the internal potential  I,

 I(r, ✓, �) = R0

1X

l=0

✓R0

r

◆l+1 lX

m=0

Pm
l (cos ✓)(g0ml cos m� + h0ml sin m�), (3)

through the following equations:
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l = (l + 1)h0ml
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Rss

!2l+13777775 . (5)

We note that in these harmonic coe�cients, the terms (l + 1)g0ml
and (l + 1)h0ml come from internal sources, while the term pro-
portional to l/(l+1)(R0/Rss)2l+1 is of external origin. In geomag-
netism, however, the notations gm

l and hm
l are generally used for

the harmonic coe�cients of the internal potential (Eq. (3)), also
known as Gauss coe�cients. To be consistent with earlier liter-
ature on solar and heliospheric physics, we continue to use gm

l
and hm

l for the harmonic coe�cients of Br and g0ml and h0ml for
the Gauss coe�cients of  I.

The radial magnetic field in the photosphere arising from
internal sources alone can be obtained from  I as follows:

Br(R0, ✓, �) = �
@ I
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=

1X
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(l + 1)
lX

m=0

Pm
l (cos ✓)(g0ml cos m� + h0ml sin m�). (6)

It can be readily seen in Eqs. (4) and (5) that gm
l and hm

l approach
(l + 1)g0ml and (l + 1)h0ml , respectively, as l approaches infin-
ity, which means that the external sources become negligible in
the photospheric magnetic field for high values of l. Only the
lowest-degree harmonics of the photospheric field are slightly
a↵ected by external sources. For Rss = 2.5R0, the relative con-
tribution of external sources to the dipole component (l = 1) of
the photospheric magnetic field is only 3.2%. Considering the
large uncertainty of the measured photospheric magnetic field at
high heliographic latitudes, the contribution of external sources
to the photospheric magnetic field can be safely neglected. In
this case, the photospheric magnetic field comes purely from the
internal potential, and the observed radial magnetic field is given
by Eq. (6) (or Eq. (2) with coe�cients including only the internal
contribution).

Multiplying both sides of Eq. (6) by the spherical harmon-
ics Pm

l (cos ✓) cos m� and Pm
l (cos ✓) sin m� and integrating over

the solar surface, we obtain the solution for the unknown Gauss
coe�cients g0ml and h0ml , respectively (Backus et al. 1996):

2⇡Z

0

d�
⇡Z

0

sin ✓d✓Br(R0, ✓, �)Pm
l (cos ✓)

"
cos m�
sin m�

#
=

4⇡(l + 1)
2l + 1

"
g0ml
h0ml

#
. (7)

Here we made use of the following orthogonality relationships
of the Schmidt semi-normalized spherical harmonics:
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where �i j is the Kronecker delta.
For photospheric magnetic field data with a longitude–

latitude grid of N� ⇥ N✓, the solid angle of a grid cell �⌦ =
sin ✓�✓�� decreases with latitude, where �✓ = ⇡/N✓ and �� =
2⇡/N�. The discrete representation of Eq. (7) then yields the
Gauss coe�cients as follows:
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The zonal (m = 0) Gauss coe�cients g00l can then be expressed as

g00l =
⇡

2
2l + 1
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i iP0

l (cos ✓i), (11)

where hBlos
i i is the zonal mean line-of-sight magnetic field at the

colatitude of ✓i.
In order to exclude outliers (e.g., newly emerged sunspots

with a magnetic field orders of magnitude higher than the back-
ground photospheric field), we use the zonal median instead of
the zonal mean in Eq. (11) to calculate the first 24 zonal Gauss
coe�cients of the internal potential. The latitudinal profiles can
be reconstructed from the first 24 zonal harmonics as follows (cf.
Eqs. (2) and (6)):

Br(✓) =
24X

l=1

(l + 1)g00l P0
l (cos ✓) =

24X

l=1

g0
l P0

l (cos ✓). (12)

The reconstruction based on the first 24 harmonics is quite su�-
cient when studying the large-scale structure of the photospheric
field.

2.3. Definition of spatial power spectrum

The main challenge in defining the spatial power spectrum of
the photospheric magnetic field is to find the correct normaliza-
tion for the harmonic coe�cients. Any real function f (✓, �) can
be expanded in terms of Schmidt semi-normalized spherical har-
monics as

f (✓, �) =
1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�), (13)

in analogy with Eq. (2). As already noted above, the spherical
harmonics form a complete orthogonal system under integra-
tion over the unit sphere (cf. Eqs. (8) and (9)). It is in fact a
generalized Fourier series that transforms a bivariate function
f (✓, �) from the two-dimensional domain [✓, �] (unit sphere)
into the two-dimensional domain of [l,m]. In this section, we
derive the generalized Parseval theorem for the Schmidt semi-
normalized spherical harmonics expansion and define the corre-
sponding spatial power spectrum.

The total power of f (✓, �) is defined as the integral of the
function squared, divided by the area of its domain:
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where ⟨Bi
los⟩ is the mean line-of-sight magnetic field at the colatitude of "i.

The latitudinal profiles of the radial magnetic field can be reconstructed from the 
first 24 zonal Gauss coefficients as follows:
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magnetic field component in the photosphere. These harmonic
coe�cients are related to g0ml and h0ml , the harmonic coe�cients
of the internal potential  I,
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We note that in these harmonic coe�cients, the terms (l + 1)g0ml
and (l + 1)h0ml come from internal sources, while the term pro-
portional to l/(l+1)(R0/Rss)2l+1 is of external origin. In geomag-
netism, however, the notations gm

l and hm
l are generally used for

the harmonic coe�cients of the internal potential (Eq. (3)), also
known as Gauss coe�cients. To be consistent with earlier liter-
ature on solar and heliospheric physics, we continue to use gm
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and hm

l for the harmonic coe�cients of Br and g0ml and h0ml for
the Gauss coe�cients of  I.

The radial magnetic field in the photosphere arising from
internal sources alone can be obtained from  I as follows:
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It can be readily seen in Eqs. (4) and (5) that gm
l and hm

l approach
(l + 1)g0ml and (l + 1)h0ml , respectively, as l approaches infin-
ity, which means that the external sources become negligible in
the photospheric magnetic field for high values of l. Only the
lowest-degree harmonics of the photospheric field are slightly
a↵ected by external sources. For Rss = 2.5R0, the relative con-
tribution of external sources to the dipole component (l = 1) of
the photospheric magnetic field is only 3.2%. Considering the
large uncertainty of the measured photospheric magnetic field at
high heliographic latitudes, the contribution of external sources
to the photospheric magnetic field can be safely neglected. In
this case, the photospheric magnetic field comes purely from the
internal potential, and the observed radial magnetic field is given
by Eq. (6) (or Eq. (2) with coe�cients including only the internal
contribution).

Multiplying both sides of Eq. (6) by the spherical harmon-
ics Pm

l (cos ✓) cos m� and Pm
l (cos ✓) sin m� and integrating over

the solar surface, we obtain the solution for the unknown Gauss
coe�cients g0ml and h0ml , respectively (Backus et al. 1996):

2⇡Z

0

d�
⇡Z

0

sin ✓d✓Br(R0, ✓, �)Pm
l (cos ✓)

"
cos m�
sin m�

#
=

4⇡(l + 1)
2l + 1

"
g0ml
h0ml

#
. (7)

Here we made use of the following orthogonality relationships
of the Schmidt semi-normalized spherical harmonics:
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where �i j is the Kronecker delta.
For photospheric magnetic field data with a longitude–

latitude grid of N� ⇥ N✓, the solid angle of a grid cell �⌦ =
sin ✓�✓�� decreases with latitude, where �✓ = ⇡/N✓ and �� =
2⇡/N�. The discrete representation of Eq. (7) then yields the
Gauss coe�cients as follows:
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The zonal (m = 0) Gauss coe�cients g00l can then be expressed as

g00l =
⇡
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2l + 1
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i=1

hBlos
i iP0

l (cos ✓i), (11)

where hBlos
i i is the zonal mean line-of-sight magnetic field at the

colatitude of ✓i.
In order to exclude outliers (e.g., newly emerged sunspots

with a magnetic field orders of magnitude higher than the back-
ground photospheric field), we use the zonal median instead of
the zonal mean in Eq. (11) to calculate the first 24 zonal Gauss
coe�cients of the internal potential. The latitudinal profiles can
be reconstructed from the first 24 zonal harmonics as follows (cf.
Eqs. (2) and (6)):

Br(✓) =
24X

l=1

(l + 1)g00l P0
l (cos ✓) =

24X

l=1

g0
l P0

l (cos ✓). (12)

The reconstruction based on the first 24 harmonics is quite su�-
cient when studying the large-scale structure of the photospheric
field.

2.3. Definition of spatial power spectrum

The main challenge in defining the spatial power spectrum of
the photospheric magnetic field is to find the correct normaliza-
tion for the harmonic coe�cients. Any real function f (✓, �) can
be expanded in terms of Schmidt semi-normalized spherical har-
monics as

f (✓, �) =
1X

l=0

lX

m=0

Pm
l (cos ✓)(gm

l cos m� + hm
l sin m�), (13)

in analogy with Eq. (2). As already noted above, the spherical
harmonics form a complete orthogonal system under integra-
tion over the unit sphere (cf. Eqs. (8) and (9)). It is in fact a
generalized Fourier series that transforms a bivariate function
f (✓, �) from the two-dimensional domain [✓, �] (unit sphere)
into the two-dimensional domain of [l,m]. In this section, we
derive the generalized Parseval theorem for the Schmidt semi-
normalized spherical harmonics expansion and define the corre-
sponding spatial power spectrum.

The total power of f (✓, �) is defined as the integral of the
function squared, divided by the area of its domain:
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Latitudinal Profiles of the Radial Magnetic Field
for Three Consecutive Carrington Rotations
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The decline of the polar 
field at the northern and 
southern ends of the 
profiles is an artefact due 
to large observational 
errors close to the edge 
of the visible solar disk. 

The change in the 
latitude range of data is 
caused by the vantage 
point effect.

Latitudinal profiles reconstructed from the first 24 harmonic coefficients are 
shown as solid lines.



Vantage Point (B0) Effect in Solar Observations

B0

B0 is the heliographic latitude of the central point of the solar disk due to the tilt 
of the ecliptic with respect to the solar equatorial plane.
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Two-year median profile 
of the radial magnetic 
field after removing the 
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latitude.  
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Definition of Spatial Power Spectrum

A&A 623, A51 (2019)
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where we used the normalization and orthogonality relation-
ships of Eqs. (8) and (9).

Equation (14) gives the total power of f (✓, �) in terms of the
squares of its harmonic coe�cients. This is the generalized Par-
seval theorem for the Schmidt semi-normalized spherical har-
monics expansion. The scaling factor 1/(2l + 1) comes from
the normalization of the Schmidt semi-normalized spherical har-
monics (Eq. (8)). We note that for a di↵erent (e.g., orthonormal)
normalization, this scaling factor would be one.

The total power can also be written as

1
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Z
f 2d⌦ =
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S degree
l , (15)

where

S degree
l =
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h
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l )2

i
(16)

is the power per degree. S degree
l is often referred to as the power

spectrum of function f in the literature. However, the power
spectrum of white noise would rise infinitely if this normaliza-
tion were used (Hipkin 2001). Therefore, it is more appropri-
ate to define the power spectrum as the power per independent
mode:

S mode
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1
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S degree
l =

1
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i
. (17)

Here the additional 1/(2l + 1) factor comes from the averaging
over the independent modes for each degree l. This definition
produces a constant power spectrum for white noise.

The total power of the magnetic field can be calculated from
the internal potential as follows:
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where the surface gradient rs is defined as

rs = rr � r@r = ✓̂@✓ +
�̂

sin ✓
@�. (19)

Inserting the spherical harmonics expansion of the internal
potential (Eq. (3)) into Eq. (18), we can express the total power
of the magnetic field in terms of the Gauss coe�cients g0ml and
h0ml (see detailed derivation in Backus et al. (1996)):
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In the photosphere (r = R0), the power-per-degree spectrum is
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and the power-per-independent-mode spectrum is
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We here use the latter definition for the spatial power spectrum
of the photospheric magnetic field, which is identical to the defi-
nition of the geomagnetic spatial power spectrum given by Maus
(2008). S mode

l provides the average power per independent mode
and does not depend on the choice of the coordinate system. The
averaging over the independent modes ensures that an uncor-
related noise, the autocorrelation function of which is a Dirac
delta, produces the expected constant flat spectrum.

We define the spatial power spectrum of the zonal (m = 0),
sectorial (l = m), and tesseral (l , m) harmonic components
similarly as the power per independent mode for each degree.
The zonal harmonics have only a single mode per degree, the
sectorial harmonics have two independent modes per degree,
while the tesseral harmonics have 2l � 2. The zonal, sectorial,
and tesseral spatial power spectra therefore are the following:
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All the spatial power spectra of Eqs. (22)–(25) yield the same
constant spectrum for uncorrelated white noise. The zonal spa-
tial power spectrum Eq. (23) gives the relative contributions of
the di↵erent zonal multipoles (dipole, quadrupole, octupole, hex-
adecapole, 32-pole, etc.) to the total power of the photospheric
magnetic field.

3. Eliminating the vantage point effect

We are interested in the zonal harmonics of the magnetic field
that are axisymmetric with respect to the solar rotation axis,
therefore we calculated the latitudinal profile of the photospheric
magnetic field by taking the zonal median of each Carrington
synoptic map for those heliographic latitudes that have no data
gaps. The zonal median excludes outstandingly high values of
sunspots or active regions and represents the expected value
of the large-scale photospheric magnetic field. As an example,
we plot the latitudinal profile of the radial magnetic field for
three consecutive CRs, CR 1910 (June 1996) through CR 1912
(August 1996) in Fig. 2. As a result of the vantage point e↵ect,
the magnetic field profiles cover di↵erent latitude ranges with
increasing (decreasing) coverage of northern (southern) latitudes
as the Earth moves from low heliographic latitudes (June) toward
higher northern latitudes.

The three profiles in Fig. 2 nicely agree with each other over
most of the overlapping latitude range, except for observations at
the highest 5� in either hemisphere for any Carrington rotation. In
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where we used the normalization and orthogonality relation-
ships of Eqs. (8) and (9).

Equation (14) gives the total power of f (✓, �) in terms of the
squares of its harmonic coe�cients. This is the generalized Par-
seval theorem for the Schmidt semi-normalized spherical har-
monics expansion. The scaling factor 1/(2l + 1) comes from
the normalization of the Schmidt semi-normalized spherical har-
monics (Eq. (8)). We note that for a di↵erent (e.g., orthonormal)
normalization, this scaling factor would be one.

The total power can also be written as
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is the power per degree. S degree
l is often referred to as the power

spectrum of function f in the literature. However, the power
spectrum of white noise would rise infinitely if this normaliza-
tion were used (Hipkin 2001). Therefore, it is more appropri-
ate to define the power spectrum as the power per independent
mode:
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Here the additional 1/(2l + 1) factor comes from the averaging
over the independent modes for each degree l. This definition
produces a constant power spectrum for white noise.

The total power of the magnetic field can be calculated from
the internal potential as follows:
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where the surface gradient rs is defined as

rs = rr � r@r = ✓̂@✓ +
�̂

sin ✓
@�. (19)

Inserting the spherical harmonics expansion of the internal
potential (Eq. (3)) into Eq. (18), we can express the total power
of the magnetic field in terms of the Gauss coe�cients g0ml and
h0ml (see detailed derivation in Backus et al. (1996)):
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In the photosphere (r = R0), the power-per-degree spectrum is
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and the power-per-independent-mode spectrum is
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We here use the latter definition for the spatial power spectrum
of the photospheric magnetic field, which is identical to the defi-
nition of the geomagnetic spatial power spectrum given by Maus
(2008). S mode

l provides the average power per independent mode
and does not depend on the choice of the coordinate system. The
averaging over the independent modes ensures that an uncor-
related noise, the autocorrelation function of which is a Dirac
delta, produces the expected constant flat spectrum.

We define the spatial power spectrum of the zonal (m = 0),
sectorial (l = m), and tesseral (l , m) harmonic components
similarly as the power per independent mode for each degree.
The zonal harmonics have only a single mode per degree, the
sectorial harmonics have two independent modes per degree,
while the tesseral harmonics have 2l � 2. The zonal, sectorial,
and tesseral spatial power spectra therefore are the following:
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All the spatial power spectra of Eqs. (22)–(25) yield the same
constant spectrum for uncorrelated white noise. The zonal spa-
tial power spectrum Eq. (23) gives the relative contributions of
the di↵erent zonal multipoles (dipole, quadrupole, octupole, hex-
adecapole, 32-pole, etc.) to the total power of the photospheric
magnetic field.

3. Eliminating the vantage point effect

We are interested in the zonal harmonics of the magnetic field
that are axisymmetric with respect to the solar rotation axis,
therefore we calculated the latitudinal profile of the photospheric
magnetic field by taking the zonal median of each Carrington
synoptic map for those heliographic latitudes that have no data
gaps. The zonal median excludes outstandingly high values of
sunspots or active regions and represents the expected value
of the large-scale photospheric magnetic field. As an example,
we plot the latitudinal profile of the radial magnetic field for
three consecutive CRs, CR 1910 (June 1996) through CR 1912
(August 1996) in Fig. 2. As a result of the vantage point e↵ect,
the magnetic field profiles cover di↵erent latitude ranges with
increasing (decreasing) coverage of northern (southern) latitudes
as the Earth moves from low heliographic latitudes (June) toward
higher northern latitudes.

The three profiles in Fig. 2 nicely agree with each other over
most of the overlapping latitude range, except for observations at
the highest 5� in either hemisphere for any Carrington rotation. In
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In the photosphere (r = R0) the power-per-degree spectrum is
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where we used the normalization and orthogonality relation-
ships of Eqs. (8) and (9).

Equation (14) gives the total power of f (✓, �) in terms of the
squares of its harmonic coe�cients. This is the generalized Par-
seval theorem for the Schmidt semi-normalized spherical har-
monics expansion. The scaling factor 1/(2l + 1) comes from
the normalization of the Schmidt semi-normalized spherical har-
monics (Eq. (8)). We note that for a di↵erent (e.g., orthonormal)
normalization, this scaling factor would be one.

The total power can also be written as
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is the power per degree. S degree
l is often referred to as the power

spectrum of function f in the literature. However, the power
spectrum of white noise would rise infinitely if this normaliza-
tion were used (Hipkin 2001). Therefore, it is more appropri-
ate to define the power spectrum as the power per independent
mode:
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Here the additional 1/(2l + 1) factor comes from the averaging
over the independent modes for each degree l. This definition
produces a constant power spectrum for white noise.

The total power of the magnetic field can be calculated from
the internal potential as follows:
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where the surface gradient rs is defined as

rs = rr � r@r = ✓̂@✓ +
�̂

sin ✓
@�. (19)

Inserting the spherical harmonics expansion of the internal
potential (Eq. (3)) into Eq. (18), we can express the total power
of the magnetic field in terms of the Gauss coe�cients g0ml and
h0ml (see detailed derivation in Backus et al. (1996)):
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In the photosphere (r = R0), the power-per-degree spectrum is
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and the power-per-independent-mode spectrum is

S mode
l =

1
2l + 1

S degree
l =

l + 1
2l + 1

lX

m=0

h
(g0ml )2 + (h0ml )2

i

=
1

(l + 1)(2l + 1)

lX

m=0

h
(gm

l )2 + (hm
l )2

i
. (22)

We here use the latter definition for the spatial power spectrum
of the photospheric magnetic field, which is identical to the defi-
nition of the geomagnetic spatial power spectrum given by Maus
(2008). S mode

l provides the average power per independent mode
and does not depend on the choice of the coordinate system. The
averaging over the independent modes ensures that an uncor-
related noise, the autocorrelation function of which is a Dirac
delta, produces the expected constant flat spectrum.

We define the spatial power spectrum of the zonal (m = 0),
sectorial (l = m), and tesseral (l , m) harmonic components
similarly as the power per independent mode for each degree.
The zonal harmonics have only a single mode per degree, the
sectorial harmonics have two independent modes per degree,
while the tesseral harmonics have 2l � 2. The zonal, sectorial,
and tesseral spatial power spectra therefore are the following:
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All the spatial power spectra of Eqs. (22)–(25) yield the same
constant spectrum for uncorrelated white noise. The zonal spa-
tial power spectrum Eq. (23) gives the relative contributions of
the di↵erent zonal multipoles (dipole, quadrupole, octupole, hex-
adecapole, 32-pole, etc.) to the total power of the photospheric
magnetic field.

3. Eliminating the vantage point effect

We are interested in the zonal harmonics of the magnetic field
that are axisymmetric with respect to the solar rotation axis,
therefore we calculated the latitudinal profile of the photospheric
magnetic field by taking the zonal median of each Carrington
synoptic map for those heliographic latitudes that have no data
gaps. The zonal median excludes outstandingly high values of
sunspots or active regions and represents the expected value
of the large-scale photospheric magnetic field. As an example,
we plot the latitudinal profile of the radial magnetic field for
three consecutive CRs, CR 1910 (June 1996) through CR 1912
(August 1996) in Fig. 2. As a result of the vantage point e↵ect,
the magnetic field profiles cover di↵erent latitude ranges with
increasing (decreasing) coverage of northern (southern) latitudes
as the Earth moves from low heliographic latitudes (June) toward
higher northern latitudes.

The three profiles in Fig. 2 nicely agree with each other over
most of the overlapping latitude range, except for observations at
the highest 5� in either hemisphere for any Carrington rotation. In
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where we used the normalization and orthogonality relation-
ships of Eqs. (8) and (9).

Equation (14) gives the total power of f (✓, �) in terms of the
squares of its harmonic coe�cients. This is the generalized Par-
seval theorem for the Schmidt semi-normalized spherical har-
monics expansion. The scaling factor 1/(2l + 1) comes from
the normalization of the Schmidt semi-normalized spherical har-
monics (Eq. (8)). We note that for a di↵erent (e.g., orthonormal)
normalization, this scaling factor would be one.

The total power can also be written as
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is the power per degree. S degree
l is often referred to as the power

spectrum of function f in the literature. However, the power
spectrum of white noise would rise infinitely if this normaliza-
tion were used (Hipkin 2001). Therefore, it is more appropri-
ate to define the power spectrum as the power per independent
mode:
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Here the additional 1/(2l + 1) factor comes from the averaging
over the independent modes for each degree l. This definition
produces a constant power spectrum for white noise.

The total power of the magnetic field can be calculated from
the internal potential as follows:
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where the surface gradient rs is defined as

rs = rr � r@r = ✓̂@✓ +
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sin ✓
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Inserting the spherical harmonics expansion of the internal
potential (Eq. (3)) into Eq. (18), we can express the total power
of the magnetic field in terms of the Gauss coe�cients g0ml and
h0ml (see detailed derivation in Backus et al. (1996)):
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In the photosphere (r = R0), the power-per-degree spectrum is
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and the power-per-independent-mode spectrum is
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We here use the latter definition for the spatial power spectrum
of the photospheric magnetic field, which is identical to the defi-
nition of the geomagnetic spatial power spectrum given by Maus
(2008). S mode

l provides the average power per independent mode
and does not depend on the choice of the coordinate system. The
averaging over the independent modes ensures that an uncor-
related noise, the autocorrelation function of which is a Dirac
delta, produces the expected constant flat spectrum.

We define the spatial power spectrum of the zonal (m = 0),
sectorial (l = m), and tesseral (l , m) harmonic components
similarly as the power per independent mode for each degree.
The zonal harmonics have only a single mode per degree, the
sectorial harmonics have two independent modes per degree,
while the tesseral harmonics have 2l � 2. The zonal, sectorial,
and tesseral spatial power spectra therefore are the following:
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All the spatial power spectra of Eqs. (22)–(25) yield the same
constant spectrum for uncorrelated white noise. The zonal spa-
tial power spectrum Eq. (23) gives the relative contributions of
the di↵erent zonal multipoles (dipole, quadrupole, octupole, hex-
adecapole, 32-pole, etc.) to the total power of the photospheric
magnetic field.

3. Eliminating the vantage point effect

We are interested in the zonal harmonics of the magnetic field
that are axisymmetric with respect to the solar rotation axis,
therefore we calculated the latitudinal profile of the photospheric
magnetic field by taking the zonal median of each Carrington
synoptic map for those heliographic latitudes that have no data
gaps. The zonal median excludes outstandingly high values of
sunspots or active regions and represents the expected value
of the large-scale photospheric magnetic field. As an example,
we plot the latitudinal profile of the radial magnetic field for
three consecutive CRs, CR 1910 (June 1996) through CR 1912
(August 1996) in Fig. 2. As a result of the vantage point e↵ect,
the magnetic field profiles cover di↵erent latitude ranges with
increasing (decreasing) coverage of northern (southern) latitudes
as the Earth moves from low heliographic latitudes (June) toward
higher northern latitudes.

The three profiles in Fig. 2 nicely agree with each other over
most of the overlapping latitude range, except for observations at
the highest 5� in either hemisphere for any Carrington rotation. In
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Two-Dipole Model 
of the Photospheric Magnetic Field

Two rings of dipoles representing the 
north-south magnetic component of 
decaying active regions in the 
photosphere in an axisymmetric case.

Two axial dipoles placed at the center 
of each dipole ring in panel A. The 
magnetic potential of the dipoles in 
panel A and B are nearly identical at 
the solar surface. 



!"# = %&'('")' + %&+(+")'
Theoretically derived zonal Gauss coefficients of two eccentric axial dipoles 

where a1 and a2 are the strength of the two dipoles and z1 and z2 are their 
locations along the z-axis of symmetry. 

The four unknown parameters of the two-dipole model can be exactly solved 
using the equations for the first four Gauss coefficients: 

Fitting the Two-Dipole Model 
to the Observed Zonal Gauss Coefficients

produced by several dipoles along the solar circumference can be closely approximated by a 
virtual north-south oriented (axial) dipole that is placed in the middle of the dipole ring as shown 
in Fig. 1B. This makes the two-dipole model of the Sun.  
 
The essential virtue of the two-dipole model is that it can closely reproduce the distribution of 
magnetic fields on the solar surface during the declining to minimum phase of solar cycle. In 
fact, the two-dipole model is the simplest model that agrees with the observed field distribution, 
and includes only four parameters, the strengths and latitudes of the northern and southern 
dipole. Interestingly, the Gauss coefficients of the spherical harmonic expansion of the magnetic 
potential arising from an eccentric dipole can be calculated analytically (11-12). In an axially 
symmetric case of Fig. 1B only the axial coefficients !"#	are non-zero. We find the following 
form for !"#	 in the two-dipole model (see detailed derivation in the Supporting Online Material):  
 
!"# = &'()(("+() + &'.).("+()	,																																																																																																																					(1) 
 
where l is the spherical harmonic degree, '1 and '2 are the strengths of the two dipoles, and z1, z2 
are their locations along the z-axis of symmetry (effectively the latitudes of the dipole rings). 
Note that for a north-south symmetric model ('( = '., z1 = -z2), Eq. (1) gives zero for all even-
degree axial coefficients. Non-zero even-degree axial harmonics can be obtained only by 
breaking the hemispheric symmetry either having different strengths ('( 	≠ 	'.) or distances 
(|)(| ≠ |).|) for the two dipoles. 
 
Since the solar photospheric magnetic field is mostly dipolar during solar minima, it is sufficient 
to calculate only the lowest axial Gauss coefficients (here up to l = 12) of the observed magnetic 
field. We use here the synoptic maps of the photospheric radial magnetic field measured at the 
Mount Wilson Observatory (MWO) during two-year periods of three solar minima in 1975-
1976, 1985-1986, and 1995-1996. The method of deriving the axial Gauss coefficients and 
estimating their error is described in detail in (13). Figure 2 presents the axial Gauss coefficients 
and the spatial power spectra (for definition, see 11) for the MWO magnetic field as well as for 
the average two-dipole model field during these three solar minima. The Gauss coefficients and 
the power spectra are normalized by the dipole term (l = 1) of the respective solar minimum so 
that the relative strengths of the harmonics can be compared among the three minima with 
different overall magnetic strengths (14-15). Note that the Gauss coefficients for the three 
minima agree with each other (at least up to l =8) within the estimated errors. This shows that the 
distribution of magnetic fields on the solar surface remains closely similar from one solar 
minimum to the next, despite some difference in total strength.  
 
Figure 2 shows that the two-dipole model yields Gauss coefficients and power spectra that have 
an excellent agreement with observations. Note, however, that only the Gauss coefficients of l >4 
are independent and can be used as a measure of agreement. The two-dipole model has four 
parameters ('(, '., z1, z2), and we have used the average values of the first four Gauss 
coefficients during the three minima to derive the values of these parameters. The model 
parameters can be solved exactly from Eq. 1, and depend on the first four axial Gauss 
coefficients as follows: 
 
)( = (9!(#!4# − 6!.#!7# + √3(27(!(#).(!4#). − 108!(#!.#!7#!4# + 64!(#(!7#)7 + 54(!.#)7!4# − 

36(!.#).(!7#).)
@
A)/(24!(#!7# − 18(!.#).),                                                                                     (2) 

 
). = (2!7# − 3!.#	)()/(3!.# − 6!(#)(),                                                                                         (3) 
 
'( = (!.# − 2!(#).)/(2)( − 2).),                                                                                                (4) 
 
'. = !(# − '(.                                                                                                                               (5) 
 
Once the optimum model parameters were fixed, we calculated the higher-degree axial 
coefficients (up to l = 12) of the two-dipole model using Eq. (1). This two-dipole model was then 
plotted in black in Figures 2A and 2B. Note that, although the observed higher-degree (l > 4) 
coefficients were not used to determine the model parameters, the model fits them very well up 
to about l = 8. Figure 2B shows that the spatial power spectra during the three solar minima are 
similar up to l = 8 but become uncorrelated for higher degrees (l > 8). This suggests that the 
observations are dominated by noise beyond l = 8 (13). Figure 2 shows that the two-dipole model 
yields a close representation of the axisymmetric magnetic field during solar minima, 
reproducing all the statistically significant axial Gauss coefficients (l < 9) that include most of 
the spectral power. 
 
Most of the low even-degree axial Gauss coefficients (l = 2, 4, 6, 8) in Fig. 2A are significantly 
different from zero during the three solar minima. This means that the photospheric magnetic 
field is systematically north-south asymmetric during these solar minima. The fact that these 
even-degree coefficients are negative implies that these terms weaken the northern polar field but 
strengthen the southern polar field. Thus, Fig. 2A verifies the earlier result that the southern solar 
polar magnetic fields are stronger during solar minima than the northern fields (16-19). 
 
In order to study this hemispheric asymmetry in more detail, we fitted the four parameters of the 
two-dipole model individually for each solar minimum. The strengths of the northern and 
southern axial dipoles (parameters '( and '.) for the three minima are shown in Fig. 3A and the 
latitudinal locations of the dipoles (parameters z1 and |z2| converted to solar latitude) in Fig. 3B. 
Figure 3B shows that the latitudes of the northern and southern dipoles are almost exactly the 
same, about 30º, which is a typical latitude where sunspots and solar active regions tend to occur. 
This lends strong support for the two-dipole model and the derived parameter values. Moreover, 
the fact that the dipole latitudes remain the same from one solar minimum to another suggests 
that the solar dynamo operates in the same region of the convection zone, despite its changing 
strength.  
 
Figure 3A shows that the strength of the southern axial dipole is systematically stronger than the 
northern dipole during all the three solar minima. Accordingly, the southern polar fields are 
stronger than the northern fields during solar minima, which confirms the earlier results (16-19). 
The southern dipole was 62% stronger than the northern dipole in 1975-1976, but only 22% 
stronger in 1985-1986 and 1995-1996. Accordingly, the relative strengths of the two dipoles 
seem to vary from one minimum to the other. Based on the results depicted in Fig. 3, it is clear 
that the observed hemispheric asymmetry in the photospheric magnetic field is mainly due to the 
different strengths of the northern and southern dipole, not due to different dipole locations in the 
two hemispheres. This provides a new important observational constraint for solar dynamo 



Normalized Zonal Gauss Coefficients and Spatial Power
Spectra for Three Solar Minima

 

 
 
 
Fig. 2. Spatial structure of photospheric field. (A) Normalized axial Gauss coefficients of the 
photospheric magnetic potential for three consecutive solar minima. Two-dipole model obtained 
from the first four Gauss coefficients is shown in black. (B) Normalized spatial power spectra for 
the same solar minima as in panel A, showing the relative contributions of the different harmonic 
multipoles to the total power.  
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Fig. 2. Spatial structure of photospheric field. (A) Normalized axial Gauss coefficients of the 
photospheric magnetic potential for three consecutive solar minima. Two-dipole model obtained 
from the first four Gauss coefficients is shown in black. (B) Normalized spatial power spectra for 
the same solar minima as in panel A, showing the relative contributions of the different harmonic 
multipoles to the total power.  
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The two-dipole model (black) fitted to the first four zonal Gauss coefficients 
can reproduce the observed spatial structure of the photospheric magnetic field 
up to the harmonic degree 8.
The low-order even zonal Gauss coefficients are significantly different from 
zero, indicating a persistent north-south asymmetry during solar minima.   
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Parameters of the Northern and Southern Dipoles

The southern dipole is stronger than the northern dipole during all the three solar 
minima. 
The northern and southern dipoles are located at similar northern and southern 
latitudes, implying that the asymmetry is caused by the different dipole strengths.



Coronal Magnetic Field Arising From the Two-Dipole 
Model of the Photospheric Magnetic Field

The potential field source surface (PFSS), where the coronal magnetic field 
becomes radial, is marked by a dashed circle. The heliospheric current sheet, 
where the magnetic field reverses,  is tilted towards the south by 4.1º.



Conclusions
• The two-dipole model can reproduce the spatial structure of the photospheric

magnetic field during solar minimum up to harmonic degree 8. 

• The north-south asymmetry is caused by the different strengths of the northern 
and southern dipoles rather than the difference in their heliographic latitudes.

• The southern dipole was found to be stronger during all the three solar minima, 
indicating a persistent north-south asymmetry in the operation of the solar 
dynamo.

• The photospheric asymmetry results in a southward tilted heliospheric current 
sheet (3º-5º) during solar minima, which is confirmed by heliospheric
observations.

• The two-dipole model could be used to fill in the polar data gaps in synoptic 
maps of the photospheric magnetic field.



Thank You!


