Solar Irradiance Variability Observations during Solar Cycles 21 to 24

Tom Woods

LASP / University of Colorado

tom.woods@lasp.colorado.edu

and Frank Eparvier, Greg Kopp, Erik Richard, Marty Snow

Evolving Magnetic Fields Drive Solar Activity

From NASA SDO HMI and AIA Images: 2010-2016

LASP

TALK OUTLINE

- What are the important solar climate records?
- Why are they important for space climate?
- How much does the Sun vary?
- What are the challenges in making these solar climate records?
- New technique to estimate degradation trends and then to make composite solar record.

Solar Climate Records Important for Space Climate

- Solar Irradiance
 - Our Sun as a Star (no spatial resolution)

Solar Spectral Irradiance (SSI)

- Brightness as function of wavelength
- Units of W/m²/nm

 $\int_{0}^{SSI} d\lambda$ Total Solar Irradiance
1361 W/m²

Total Solar Irradiance (TSI)

- TSI is SSI integrated over all wavelengths
- Units of W/m²

Solar Ultraviolet Absorbed in Earth's Atmosphere Affects

- Space Weather
 XUV, EUV, & FUV heat thermosphere and create the ionosphere
- Space Weather impacts:
 - HF Communication
 - GPS Navigation
 - Satellite Drag (lifetime)

Woods - Space Climate 7 - slide 4

Climate Change

- MUV, NUV, Vis, & NIR are absorbed lower and at the surface
- Climate Change
 impacts:
 - Stratosphere Ozone and Water Chemistry
 - Top-Down Heating
 - Bottom-Up Heating

Many Satellites Provide the Solar Climate Records

- Overlapping observations are critical to accurately combine the different measurements into a composite time series.
- Many of these can obtained from http://lasp.colorado.edu/home/lisird/

Key Goal is Creating Long-term Composite Record

Example of SSI Composite Record at H I Lyman- α (121.6 nm)

• Woods & Rottman, J. Geophys. Res., 1997

LASP

• Woods, Tobiska, Rottman, & Worden, J. Geophys. Res., 2000

http://lasp.colorado.edu/lisird/

SORCE might be turned off on July 16, 2019 (NASA HQ decision will be made on July 11)

Woods - Space Climate 7 - slide 7

LASP

SORCE Key Legacy Products are TSI and SSI Climate Records

SORCE Science

 Observe the solar irradiance to create and extend the climate records of the total solar irradiance (TSI) and solar spectral irradiance (SSI: 200-2400 nm).

- Understand the variability of the Sun's 27-day rotation period and over the 11-year solar cycle
- Model the solar variability for extending solar irradiance climate records back in time
- Explain and predict the effect of the Sun's radiation on the Earth's atmosphere and climate

LASP

NOAA's Climate Data Record Program

NRC / NOAA defined key Climate Data Records (CDRs) in 2004, and SORCE TSI and SSI data products and SORCE-supported models of solar variability from NRL (Judith Lean) were adopted for NOAA's CDRs about TSI and SSI. [Coddington et al., BAMS, 2016]

1364

Total Solar Irradiance (TSI)

Solar Spectral Irradiance (SSI) This time series is one of 2000 λ s.

LASP's Solar Irradiance Future after SORCE are NASA TSIS, NASA CubeSats, and NOAA GOES Missions

- NASA Total and Spectral Irradiance Sensor (TSIS) has TIM (TSI) and SIM (SSI 200-2400 nm) instruments
 - TSIS-1 launched in Dec. 2017 to ISS
 - CSIM CubeSat launched in Dec. 2018
 - CTIM CubeSat will be launched in 2020
 - Free-flyer TSIS-2 is in development

LASP

- GOES-R EUV X-ray Irradiance Sensors (EXIS) has XRS and EUVS instruments (SSI selected lines in 0.1-290 nm)
 - EUVS-C continues the Mg II index
 - GOES-16 launched in 2016, GOES-17 launched in 2017
 - Two more, GOES T & U, to be launched

TSIS-1 TIM and SIM are Working Great !

• There are some small offsets between these different TSI data sets. [Greg Kopp had TSI talk earlier in this session]

Woods - Space Climate 7 - slide 10

LASP

SORCE and TSIS-1 Overlap Has Been Successful

• TSIS-1 science operations began in March 2018, so SORCE and TSIS-1 have overlap of 16 months as of July 2019.

TSIS SIM

Solar Spectral Irradiance (SSI) Comparison

⊷ SORCE (SIM V25)

Compact SIM CubeSat – launched Dec 2018

- CSIM is a 6U CubeSat in SSO at 580km
- Plots are from Erik Richard (CSIM CubeSat PI)

Variability Examples for TSI and H I Lyman- α 121.6 nm

<u>11-year Solar Cycle (SC)</u>

- The 22-year magnetic cycle results in a 11-year intensity (sunspot) cycle.
- The minimum in 2008-2009 may be slightly lower than previous minima.
- The variability (Max-Min) for SC-24 is about 50% lower than previous cycles.

27-day Solar Rotation

- Rotation of active regions (AR) is like a Beacon as viewed from Earth.
- AR eruption has only positive variability for UV emissions for ~6 months but has negative (dark sunspot) variability for the first rotation for TSI and NUV-Vis-NIR.

SORCE SIM Results for SC Variability

 SORCE SIM results of out-of-phase variations for visible and near infrared and larger ultraviolet variations are <u>in debate</u> as they do not agree with prior measurements and most solar irradiance models.

Example Differences for SSI Solar Cycle Variability

- Ball et al. (Astron. & Astrophy., 2011): SATIRE model agrees with UARS results in UV but disagrees with SORCE SIM long-term variability (200-1600 nm)
 - Is SSI variability not entirely controlled by surface magnetism?
 - Are there uncorrected instrument trends in UARS or SORCE?
- SIM SATIRE-S E ≥ 15.2 201-300 nm 15.0 01/07 01/09 01/05 01/06 01/08 Date (mm/yy) SIM 972-1630 nm SATIRE-01/05 01/06 01/07 01/08 01/09 Date (mm/yy) LASP

- DeLand & Cebula (*J.A.S.T.P.*, 2011): SIM versus earlier SBUV composite 170-400 nm (*but not concurrent measurements*) – concludes SORCE has uncorrected degradation based on NRLSSI model comparisons
- Unruh *et al.* (2011): Comparison of SATIRE, UARS, and SORCE for 220-240 nm shows 1% per year trend differences

Reminder: Key Goal is Creating Long-term Composite Record

What are the challenges for these solar records?

From http://lasp.colorado.edu/lisird/

Challenge 1: Different Levels of Irradiance

Satellite Measurements of the TSI

Challenge 2: Incomplete Spectral Coverage

• Ultraviolet coverage is most complete since 1978

Challenge 3: Instrument Degradation Correction

• Understanding instrument degradation is critical for obtaining accurate solar cycle variations.

In-flight Calibration Techniques

- <u>Redundant Channels</u>
- One channel is used daily, and others have low-duty cycle (weekly or monthly)
- Trending assumes exposure-related degradation
- Challenge is for nonexposure related degradation

LASP

- On-board Lamps
- Calibrated lamps are used with lowduty cycle
- Trending assumes lamp is stable
- Challenge is that lamps can degrade and have often burned out in-flight

External Sources

- e.g. stable stars (O and B stars in UV)
- Trending assumes source is stable
- Challenges are availability of target and stability of stars

Underflight Campaigns

- Identical instrument has underflight with satellite
- Transfers fresh calibration to satellite instrument
- Limited to the EUV-FUV range because calibration accuracy (~5%) needs to be much smaller than solar cycle variability

New Technique to Validate Degradation Trends

- The Multiple Same-Irradiance-Level (MuSIL) analysis technique was developed to identify uncorrected instrument degradation trends.
- Key assumption is irradiance level repeats during rise & fall of solar cycle (SC).

Long record needed on both sides of solar cycle minimum

For example, TIMED/SEE from 2002-2018

Same-Irradiance-Level \rightarrow

LASP

solar cycle and instrument trends

Figures are from Woods *et al., Solar Phys.*, 2018

New Technique to Validate Time Series

• Combining the trends from 8 levels provides a trend that indicates an uncorrected instrument degradation trend.

- This trend is fit with piecewise linear fits (gold lines).
- Uncertainty is estimated to be 5-10% of solar cycle variability.
- Method weakness is that it leaves gap during solar cycle minimum.

SORCE TIM TSI has a Small Trend in MuSIL Analysis

- MuSIL analysis of TIM TSI is used to validate the MuSIL technique, but it does show an upward trend.
 - MuSIL Trend is within 2- σ of TIM's stability estimate of 10 ppm/year
- DeWitte & Nevel [2016] suggest there is SORCE TSI trend in comparison to other TSI records.

SORCE TIM TSI has a Small Trend in MuSIL Analysis

- MuSIL analysis of TIM TSI is used to validate the MuSIL technique, but it does show an upward trend.
 - MuSIL Trend is within 2- σ of TIM's stability estimate of 10 ppm/year
- DeWitte & Nevel [2016] suggest there is SORCE TSI trend in comparison to other TSI records.

New Solar Cycle Variability Results: TIMED SEE

- TIMED SEE Extreme Ultraviolet (EUV) and Far Ultraviolet (FUV) at < 150 nm are consistent with other estimates.
- New MuSIL result has improved results for TIMED SEE solar cycle variability, primarily for wavelengths > 150 nm.

New Solar Cycle Variability Results: SOLSTICE

- SORCE SOLSTICE Far Ultraviolet (FUV) and Middle Ultraviolet (MUV) are consistent with other estimates.
- New MuSIL result has improved results for SOLSTICE solar cycle variability, primarily for wavelengths > 210 nm.

New Solar Cycle Variability Results: SORCE SIM

- SIM provides results in the Near Ultraviolet (NUV), Visible, and Near Infrared (NIR).
- The SIM NUV solar cycle variability at < 400 nm is consistent with other estimates.
- New MuSIL result has out-ofphase wavelengths for 800 nm to 1600 nm. This is more consistent with Harder *et al.* [2009] result than the models.

LASP

SORCE SSI Solar Cycle Variability Comparison

• Harder et al. (GRL, 2009) Data Analysis

- Half-cycle can be *sensitive* to instrument degradation
- 4/2004 (Max) 2/2008 (Min)
- Multiple Same-Irradiance-Level (MuSIL) Data Analysis (not modeling)
 - New technique developed to identify uncorrected instrument degradation trend
 - Woods et al., Solar Physics, 2018)
- Energy Method Model

LASP

- SFO excess and deficit proxies fitted over 6-month periods are integrated over time (energy)
- Modeling over 6-month periods is *not very sensitive* to long-term instrument trends
- Woods et al., Solar Phys., 2015

Variability = Max - Min

Solar Spectral Irradiance Composite 3-year Plan

- Using MuSIL analysis to assemble new composite SSI record
- Working up in wavelength to make this composite record:
 - 0.1 nm to 1600 nm
 - 1980 to present time
- Completed EUV (0.1-115 nm) range in Year 1

Mission/Instrument	Wavelength Range	MuSIL Tending	Proxy Madalina	Composite
& Mission Years	/ Resolution (nm)	Analysis	Modeling	Record
SORCE/SOLSTICE	115-308 nm	Completed	Year 2	FUV, MUV
2003-present	/ 0.1 nm			Years 2-3
SORCE/SIM	240-2400 nm	Completed	Year 2	NUV-Vis-NIR
2003-present	/ 1-10 nm			Years 2-3
OMI	265-500 nm	Completed	Year 2	NUV-Vis
2004-present	/ 0.5 nm			Years 2-3
TSIS-1/SIM	200-2400 nm	Year 3	Year 3	NUV-Vis-NIR
2018-present	/ 1-10 nm			Year 3
CSIM CubeSat	200-2400 nm	Year 3	Year 3	NUV-Vis-NIR
2019-present	/ 1-10 nm			Year 3
TIMED/SEE-EGS	27-190 nm	Completed	Completed	EUV, FUV
2002-present	/ 0.4 nm			EUV Completed
SDO/EVE-MEGS	6-106 nm	Completed	Completed	EUV
2010-present	/ 0.1 nm			Completed
UARS/SOLSTICE	117-420 nm	Year 2	Year 2	FUV, MUV, NUV
1991-2005	/ 0.2 nm			Year 2
UARS/SUSIM	115-410 nm	Year 2	Year 2	FUV, MUV, NUV
1991-2005	/ 0.1-1 nm			Year 2
SME	115-300 nm	Year 2	Year 2	FUV, MUV
1981-1989	/ 1 nm			Year 2
NOAA SBUV 1-2	160-400 nm	Year 2	Year 2	MUV, NUV
1978-1997	/ 1 nm			Year 2

New EUV Composite Record Combines the TIMED SEE and SDO EVE Results

New Solar Cycle Variability vs. Wavelength

- Three emission lines are highlighted for different layers of the solar atmosphere:
- O II,III 83.4 nm emission is typical for the *chromosphere* with about 30% variability
- He II 30.4 nm emission is typical for the *transition region* with about 70% variability
- Si XII 49.9 nm emission is typical for the *corona* with about 1000% variability (which is factor of 11)

LLASP

New Solar Cycle Variability vs. Temperature

- Solar cycle variation has minimum near log(Temp) of about 5.1 [0.12 MK]
- Emission temperatures indicate where the emission is formed in the solar atmosphere

Astron. & Astrophy.

Summary

 New solar cycle variability results show better consistency between different measurements from 6 nm to 1600 nm for 2002-2017 in Solar Cycles (SC) 23 and 24.

• Woods et al., Solar Physics, **293**, A76, 2018

- New solar spectral composite is currently in 0.1-115 nm range and from 1980 to present time.
 - SC-24 is significantly less variable
- Future work is to extend this composite to 1600 nm for SC 21-24

LIASP

- New solar composite time series will be served from the LASP Interactive Solar Irradiance Data Center (LISIRD) in the near future
- http://lasp.colorado.edu/lisird/

ZOZO Sun-Climate Symposium Jan. 28-31, Tucson, AZ

