Information theoretic approach to discovering causalities in the solar cycle

Simon Wing¹ Jay R. Johnson² Mausumi Dikpati³

¹The Johns Hopkins University Applied Physics Lab ²Andrews University

Introduction and motivation

Babcock-Leighton type model [Babcock, 1961; Leighton, 1964; 1969]

- The solar dynamo is not fully understood
- it is still a challenge to predict SSN
- apply information theory to identify causal parameters and the response lag times
- provide observational constraints to solar cycle models and theories:
 - surface flux transport models [e.g., Devore and Sheeley, 1987; Wang et al., 1989; 2005]
 - flux transport dynamo models [e.g., Dikpati et al., 2006; Choudhuri et al., 2007]
- Babcock-Leighton type model
 - important parameters:
 - meridional flow
 - polar field
 - flux emergence

Model predictions of SSN at solar max for solar cycle 24

API

transfer entropy

A common method to establish causal-relationships between two time series, e.g., $[x_t]$ and $[y_t]$, is to use a time-shifted cross-correlation function

$$r(\tau) = \frac{\langle x_t | y_{t+\tau} \rangle - \langle x \rangle \langle y \rangle}{\sqrt{\langle x^2 \rangle - \langle x \rangle^2} \sqrt{\langle y^2 \rangle - \langle y \rangle^2}}$$

4

where r = correlation coefficient and τ = lag time

The results may not be clear if x and y have multiple peaks

transfer entropy

A better alternative is to use transfer entropy [Schreiber, 2000]

 $TE_{x \to y}(\tau) = \sum_{t} p(y_{t+\tau}, yp_t, x_t) \log \left(\frac{p(y_{t+\tau} \mid yp_t, x_t)}{p(y_{t+\tau} \mid yp_t)} \right)$

 $yp_t = [y_t, y_{t-\Delta}, \dots, y_{t-k\Delta}], k+1 = \text{dimensionality of the system, and } \Delta = \text{first minimum in MI}$

 $TE(x \rightarrow y)$ gives a measure of information transfer from x to y given that the past values of y are known

TE can be considered a special case of conditional mutual information (CMI)

$$TE_{x \to y}(\tau) = CMI(y(t + \tau), x(t)|yp(t))$$

if no information flow from x to y, $TE(x \rightarrow y) = 0$

unlike correlation, $TE(x \rightarrow y) \neq TE(y \rightarrow x)$

TE can take into account nonlinearities in the system

Transfer entropy

APL

Data set

- SSN 1749–2016 SILSO website in Belgium
- sunspot area1874–2016 NASA MSFC website
- meridional flow 1986–2012 MWO [Ulrich, 2010] (from R. Ulrich)
- polar faculae 1906–2014 MWO, WSO, SOHO [Munoz-Jaramillo et al., 2012] at Solar Polar Fields Dataverse website
- polar field 1967–2015 MWO, SWO [Ulrich, 1992; Wang and Sheeley, 1995] (from Y.-M. Wang)
- axial dipole strength 1967–2015 MWO, WSO [Wang and Sheeley, 1995; 2009] (from Y.-M. Wang)
- aa index 1868–2010 NOAA NCEI website

All data are evaluated (averaged, interpolated) at monthly resolution

Solar cycle variations in solar data

1985 1990 1995 2000 2005 2010 2015 2020

Date

Solar polar faculae/magnetic flux

35

Solar cycle variations of

- aa index
- polar faculae
- polar field
- axial dipole field strength
- meridional flow
- Sunspot number (SSN)

SSN and aa index

Hathaway et al. [1999]

Both, SSN and aa index exhibit cyclical variations

$SSN \rightarrow$ aa index

aa index→ SSN [e.g., Ohl, 1966; Hathaway et al., 1999; Schatten and Pesnell, 1993; Wang and Sheeley, 2009]

9

SSN and aa index

- peak |corr(aa index(t), SSN(t + τ))| ~ peak |corr(SSN(t), aa index(t + τ))|
- **But**, TE(SSN \rightarrow aa index) > TE(aa index \rightarrow SSN)
- more information is transferred from SSN to aa index than the other way around; aa index is a poor proxy for the solar polar field – this information cannot be obtained from correlational analysis

SSN and solar polar field

- TE(polar field \rightarrow SSN) peaks around $\tau \sim 30-40$ months, not 66 months assumed in some models
- peak significance = (peak TE mean(noise))/ σ (noise) = 19 σ
- TE(SSN \rightarrow polar field) is significant [Upton and Hathaway, 2014]

Which parameters control the polar field?

- surface flux transport models [e.g., Devore and Sheeley, 1987; Wang et al., 1989;2005] and flux transport dynamo models [e.g., Dikpati et al., 2006, Choudhuri et al., 2007]: meridional flow controls the strength of the polar field
- amount flux emergence (SSN) controls the polar field [Upton and Hathaway, 2014]
- TE(meridional flow \rightarrow polar field) peaks $\tau \sim 30-40$ (pos corr), $\sim 90-110$ months (neg corr)
- TE(SSN \rightarrow polar field) peaks $\tau \sim 50-80$ months (pos corr)

Are the past n cycles important for predicting SSN?

- Dikpati et al. [2004] suggested that meridional flow is slower at the bottom of the convection zone and hence the polar fields from the last 3 cycles should affect SSN (see also Charbonneau & Dikpati, 2000)
- TE(polar faculae → SSN) peaks at τ ~30-40 months but persists at a lower level thereafter for at least 400 months (~ 3 solar cycles)
- There are minima at τ ~1 and ~2 solar cycle periods

Information transfer from polar field, polar faculae, and meridional flow to SSN

- noisy because data have shorter timespan, limited by meridional flow data
- TE([polar faculae, polar field]→SSN) > TE(meridional flow → SSN) at τ ~30–40 months, which may be consistent with Dikpati et al. [2010] model.
- TE(meridional flow → SSN) peaks around τ ~120 months (~1 solar cycle period), suggesting the meridional flow can be used to predict SSN one solar cycle period ahead

Conversion from toroidal to poloidal field is hard

Comparing observations with Dikpati simulation

Summary and Conclusion

- $TE(SSN \rightarrow aa index) > TE(aa index \rightarrow SSN)$
- TE(polar field → SSN) peaks at τ ~ 30–40 months (the response of SSN to polar field peaks ~3-4 years, not 5.5 years).
- Polar faculae transfers similar amount of information as polar field to SSN, confirming that polar faculae is a good proxy of polar field
- TE(polar field \rightarrow SSN) > TE(meridional flow \rightarrow SSN) at $\tau \sim 30-40$ months
- TE(meridional flow \rightarrow SSN) peaks at $\tau \sim 120$ months
- TE(meridional flow \rightarrow polar field) peaks at $\tau \sim 30$ (pos corr), $\sim 90-110$ months (neg corr) whereas TE(SSN \rightarrow polar field) peaks $\tau \sim 50-80$ months (pos corr)
- TE(polar faculae \rightarrow SSN) peaks at $\tau \sim 30-40$ months, but persists at lower level for at least 3 solar cycles
- Our results provide observational constraints to solar cycle models and theories
- More work to be done to understand our results
- Interested to try other models or parameters