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Evolution of the slow solar wind during a solar cycle
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While it is certain that the fast solar wind originates from
coronal holes, where and how the slow solar wind (SSW) is
formed remains an outstanding question in solar physics.



The slow wind is a messy story!

Several possible origins:

-> the slow wind forms like the fast wind along open field lines!

-> the slow wind forms via continual plasma exchanges between the
open and closed corona

->a component certainly forms via transient releases at the tip of
streamers



Outline

* Intro on slow solar wind and implication for long-
term evolution of the slow wind

e State-state theories for the origin of the slow wind

* Dynamic theories for the origin of the slow wind



Why should we care about the

slow solar wind here?



1) There are long-term trends in solar wind properties including
solar wind speed:
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2) The slow wind source hosts most of the emergence and shedding
of open flux over different timescales:
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3) The slow wind is likely to hosts CME propagation and very strong
particle acceleration

High-energy particles produced
near the tip of streamers
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4) Lots of fascinating MHD instabilities, kinetic physics and wave-
particle interaction to study heating rate and composition of the
slow wind.
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Contrasting the origins of slow and fast solar winds:
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Differnetial ion heating is weaker in the source region of the slow wind:
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But temperature anisotropyis therefore also found in the streamer edges and coronal hole
boundarieswith valuesin the range of 1.3-2 (Frazin et al, 2003; Susino et al, 2008).

-> Alfvén wave driven solar wind models highly popular



The source region of the slow solar wind has hot electrons!

The ionic charge states are largely fixed in the inner corona (generally
below 10Rs), as opposed to density and temperature which change
dynamically during the transit in the heliosphere.
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Long-term temperature decrease at the source of the wind:

Solar wind ionization states in both fast and slow wind decrease during the
declining phase of cycle 23, which should be in some way related to the
decreasing solar magnetic field:

-> less magnetic energy would be available to power the wind (Schwadron et al,
2011).
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Slow solar wind from unipolar streamers:

UVCS - fast wind e » str. bound. 1996
¢ pseudo-str. 2008
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Slow solar wind from unipolar streamers:

-> pseudo-streamers produce a “hybrid” type of outflow that is
intermediate between slow and fast solar wind and they are apossible
source of slow/fast wind in not dipolar solar magnetic field configuration.
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Flux expansion factor theory:

P ¥ Fast Wind
Coronal pd (small f<)
source / ‘ '
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/
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} Photosphere

Wang and Sheeley 1990, 1991, 1994,
Wang et al. 2008



Basic ingredients to model a ‘realistic’ solar wind:

- suppose the simplest single fluid model with an isotropic distribution function
to reproduce (roughly!) coronal temperatures and solar wind moments:

Ingredients:
A
; > - Anisotropic thermal conduction (extra term or can
[ Electrons . .
:\J/‘ be included by solving for electrons),

‘/ < Radiative cooling (usually a function),

N
; Some heating (choose your favourite!)
¥
= + an unknown additional contribution to
=

momentum (wave pressure?, electric fields?)

M -> V,T,N compare reasonably well with
1 _Jransition, [Ny < /T~ b i
i observations.
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( Verdini and Velli 2007, Downs et al. 2009,
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Photosphere to corona solar wind models run with realistic thermodynamics and high-
resolution magneto-static models (PFSS, NLFF):

Syntheticimagery

PFSS (or NLFF) 3-D solar wind plasma

Done by MHD modellers on smoothed magnetograms:

SOHO C2

Pinto and Rouillard (2017)




To compare simulations with remote-sensing observations

- We need ‘Realistic magnetic fields’
- Tofill in the 3-D volumeinside our instruments’ field of view

3-D (MULTI-TUBE), 1-D flows Full 3-D MHD

Model STA 195 Model STA 284

-1000 -500 0 500 1000 -1000 -500 0 500 1000

STA STA 284

MODEL

Pinto and Rouillard 2017 Van der Holst 2014
-> Provides space-weather forecasts Lionello et al. 2009, Downs et al. 2009
Reville et al. 2018
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 Wide-Field Imager : 13.52 - 1052 from the Sun.
e Visible Light Observations.

e Next-Generation 2k x 2k APS Sensor.

* Smallest Heliospheric Imager to-date. :«;& >
» Heritage: STEREO/HI, Solar Orbiter/SoloHI a6
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IRAP MHD model prediction for Parker Solar Probe

See PSP Nature special issue (Nov 2019) to evaluate our predictions.
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MHD simulations cannot explain both source
temperature and brightness of the corona

Michican lonisation Code (MIC, Landi and co-workers) + AWSoM 3-D MHD
(Oran et al. 2015):

* Reproduces the relative charge states of the slow and fast winds,
* Emissions of differentions difficult to re-produce,
* Excursions from average charge state are not explained (footpoint exchange?)

-> supra-thermal electrons (3MK) improve the agreement between observed and
synthetic fluxes of 10 emission lines considered here.
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Can we model the composition of the solar wind?

How do we address the FIP effect?
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Slow and fast solar winds are very different!

* 4 xphotospheric Fe/O abundanceratio
* Depleted He abundance
 Small proton T anisotropy
e High iron charge states
* |Intermittent structures
(see Rouillard et al. 2010, 2011)

SLOW
WIND

On M-stars= Opposite abundance anomaly to solar slow wind and loops.

No model is yet capable of simulating coronal composition in 3-D!



The slow wind forms along flux tubes that are adjacent and likely to interact
with closed loops:

Rigid rotation Fisk field S-Web
of coronal holes

e.g. Elephanttrunk

Wang, Nash, Fisk (1996) Antiochos et al. 2008
Sheeley (late 80s)



PSI Prediction 08/14/2017 - Terrestrial North up



Can we find signatures of this release process in remote-sensing?

Scales, scales, scales ...

CMEs/MAGNETIC CLOUDS
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Arc-like structures emitted over 2-3 edge-on blobs per day
20-40 degrees PA range Sheeley et al. 2008
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Rouillard et al. (2011a)

If blobs are produced high up

in the corona and are flux ropes
then can we detect inward
motions (i.e. analogousto the
SADs in EUV)?

SIR/CIR

ST-B




. d) PFSS (2. 5 Rs)
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International sunspot number S, : monthly mean and 13-month smoothed number
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-> Analysis of in situ data: Sanchez-Diaz et al. 2019



Upflows are seen by Hinode on the edges of active regions

Harra et al. 2008

It was estimated that this up owing plasma could form around 25% of the SSW (Harra 2008)

However! Considering the small field of view of Hinode/EIS, it is challenging to make a
direct link to the solar wind and therefore to determine whether these up flows actually

become out flows leaving the Sun.



What about far from the current sheet?

L8-temporal-unsharp: 2014-04-14T17:16:00.017

o

Short-time fluctuation (x109 B Rg?)

3
o
g
[=]
a
g
3
2
g
<
%
k|
[=]
@

)

Solar-X (Apparent Solar Radii}

DeForest et al. 2018









oo SN

RS han,
Vs B ey
Iaaas Ty,

ER R

T ond

3

3

dasdaaas,
5 2in sy
s e by b

EAEY

BN 0 one s

R




Analysis of the near-Earth solar wind during the period 1998-2011 reveals that

inverted HMF is present approximately 5.5% of thetime and is generally associated
with slow, dense solar wind and relatively weak HMF intensity.

Inverted HMF is mapped to the coronal source surface -> a strong association with
bipolarstreamers containingthe heliospheric current sheet, as expected, but also
with unipolaror pseudostreamers, which contain no current sheet.

(a) Pseudostreamer loop does not extend to solar wind formation height

(b) Pseudostreamer loop extends to solar wind formation height

Owens et al. 2013

Stay tuned to PSP results!



Quasi steady-state VS Dynamic
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Solar Wind
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A 4
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Include elements of kinetic plasma physics




A unique approach at modelling the 3-D multi-species anisotropic coronal

Kinetic-Fluid solver

Lavarra, Rouillard et al.
(InPrep.2018)
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Testing the dynamic origin of the slow solar wind!

How variable is the slow wind composition?
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Pinto, Rouillard 2016)
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Merci!



