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End-user needs

* If we acknowledge space weather as
the societal dimension of
heliophysics, understanding the
impacts and associated end-user
needs are the foundation of the field.

* Our space weather work must be
informed by those needs and strive
toward generating information that is
actionable.




industry

* While also predictions are of interest,
the main U.S. focus right now is on
hazard assessments.

* To enable hazard assessments, space
weather extremes need to be
communicated to the end-user in the
form of benchmarks.

End-user needs — power transmission
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GMD benchmark requirements

»
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Line lengths ~100 km
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* Science side needs to provide information about a physical
parameter that is directly applicable/actionable to further o
engineering analyses. (geoelectric field) o

 We need to address the following key characteristics of the
extreme geoelectric fields: @
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* Longer duration enhancements necessary for thermal heating-
related problem:s.

* Science analyses also need to characterize the occurrence
rates of i-iii.
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GMD benchmark requirements

* The geomagnetic induction process that generates the geoelectric
field is dependent on external and internal factors:
iv. Many different near space electric currents systems contribute to driving of

geomagnetic induction. The effect of the geomagnetic latitude, and
possibly local time, needs to be taken into account. (Element 4)

v. Thelocal ground conductivity dictates the ground response. Local geology
needs to be taken into account. (Element 5)
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End-user needs —
human spaceflight

* While low-inclination LEO (ISS orbit) is fairly
benign from the space radiation perspective,
deep space environment experienced in the
Artemis program poses a much more
significant challenge.

* The key problem is ionizing radiation: > 10
MeV ions for EVAs and > 100 MeV ions for
the crew inside the vehicle.

* Primary sources for energetic ions
contributing to possible problems include
galactic cosmic rays, SEPs and inner radiation
belt — only the SEP component discussed
here.




* Due to the SEP challenge,
Artemis will have storm
shelter as a part of the ops.
The shelter needs to be
deployed in 30 min from
(Townsend et al., 2018) =»
Predictive capability plays a
critical role in the ops.

 We need to have information
about elevated, likely mostly
CME shock-driven, energetic
ion fluxes at the location of
the vehicle.

2017 Sep 8 16:40




End-user needs — human spaceflight
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Addressing the end-user needs
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GMD benchmark(s) — spatiotemporal
representation per the NERC standard

Ex(x,y,t)
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GMD benchmark(s) — regional vs localized
enhancements

Pulkkinen et al. (2015)

Geoelectric field distribution at 07:32:20 UT. Max. |El: 4.41 V/km. Geoelectric field distribution at 16:49 UT. Max. |EIl: 5.68 V/km.
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Fig. 1 Computed geoelectric field distribution on November 24, 2001 at 07:32 UT. The colored circles show the three station groups used in spatial Fig. 3 Same as Fig. 1 but for October 30, 2003 at 16:49 UT. A station in the blue group experiences the largest single station geoelectric field
averaging: blue, green, and red groups. The green group generates the largest average geoelectric field magnitude of 2.8 V/km. Note that the magnitude of 5.7 V/km. The spatially averaged field magnitudes for blue, green, and red groups are 1.5, 0.6, and 0.1 V/km, respectively
maximum geoelectric field amplitude indicated in the top of the figure refers to a single station maximum, not to group average. Corrected
geomagnetic coordinates and Oblique Mercator map projection are used
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SEP prediction approaches

Models available at iswa.gsfc.nasa.gov & ccmc.gsfc.nasa.gov
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All clear/pre-eruption forecasts

Post-eruption timeline forecasts
Mays et al. (2017)
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Towards coupled heliosphere and SEP models

CCMC is making steps towards offering a system to run SEP models driven by a variety of heliospheric models.
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Conclusions

* From the space weather standpoint, end-user impacts and needs are
the fundamental driver for identifying i) actionable physical
parameters of interest, ii) relevant spatiotemporal scales.

* “Unfortunately” it is often necessary to address a blend of global and
local spatial scales and a wide range of temporal scales — space
weather challenges our understanding of the heliophysics system.

* Empirical, first-principles, handwaving etc. approaches all being used
— the nature of the approach does not matter as long as it works.

* It is not all about predictions: In some applications general
characterization of extreme environments is currently of greater
interest.
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Integrated Exploration Manifest: 2019-2024

2019 2020 2021 2022 2023 2024
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H Commercial Crew Test Flights Other LEO Commercialization Activities (in work):
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. Government LEO Research Policy (through NSpC)
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