
K. Petrovay Space Climate 7 – p. 1 of 28

SOLAR CYCLE PREDICTION ON YOUR FINGERS

(AND TOES)

K. Petrovay
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In the forest of space climate prediction:



K. Petrovay Space Climate 7 – p. 3 of 28

For a map of the forest, check the 2019 revision of my Living Review:
https://arxiv.org/abs/1907.02107

In this talk, we’ll simply take a walk...
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OUR BEST BET: THE POLAR PRECURSOR

Observations ‖ dynamo concept:
Polar field at minimum⇒ amplitude of next maximum

Hathaway & Upton (2016)
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Key issue: What determines the value of the precursor?

Polar field builds up from poleward transport of unbalanced trailing
polarity AR fields, described by surface flux transport (SFT) models.

SFT equation:
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Btw. recent evidence for the need of a decay term: Virtanen et al. (2017),
Whitbread et al. (2019), Petrovay & Talafha (2019)
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Consider a single AR source:
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The SFT equation is linear⇒ solutions can be superposed⇒

⇒ polar fields are built up from the

contribution of many individual AR:

ARs are responsible for the reversal of
the polar field and for the buildup of
new, opposite polarity polar field late in
the cycle.

Polar fields serve as the seed for the toroidal field in the next cycle ⇒
amplitude of next cycle may be determined well before the minimum by

considering the dipole contributions of individual AR. (Wang & Sheeley 1991)
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Intercycle variations may be due to
– variations in the meridional flow

(Dikpati et al. 2010, Upton & Hathaway 2014, Hung et al. 2017)

– variations in the unbalanced flux contribution by active regions

Dipole moment: D(t) =
3
2

∫ π/2

−π/2
〈B〉φ(λ, t) sin λ cos λ dλ.

A bipolar AR contributes δDi =
3

4πR2 Φ d sinα cos λ

⇒ Variations in number, Φ, λ and tilt of AR lead to intercycle variations.

Variations in AR dipole contribution may be due to

(1) systematic feedback (e.g. tilt quenching)

(2) random fluctuations
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TILT QUENCHING — TILT PRECURSOR

Dasi-Espuig et al (2010):
(a) Stronger cycles – lower tilt. (b) Tilt × amplitude⇒ next cycle ampl.

Gives rise to idea of “tilt quenching” — a nonlinear feedback mechanism
governing cycle to cycle variations.
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Effect incorporated into SFT model: Cameron et al. (2010)

Explained by variations in meridional inflow pattern:
Cameron & Schüssler (2012), Martin-Belda & Cameron (2018)

Surface flux transport (SFT) models with tilt quenching reproduce
observed variations in polar field well — except cycle 24
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RANDOM FLUCTUATIONS

Effect of scatter in Joy’s law considered by Jiang et al. (2014).

Random fluctuations in Joy’s law⇒ unpredictable deviations.
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Total poloidal flux ∼ surface flux⇒ a single large AR can make a difference

A bipolar AR contributes δDBMR ≈ F d sinα sin θ
⇒ to make a difference, an AR needs to be

– large
– unusually tilted (esp. non-Joy/non-Hale — or very “overJoy”)
– close to the equator (?)

Such “rogue” active regions can play havoc with the cycle. (Cameron+ 2013)



K. Petrovay Space Climate 7 – p. 13 of 28

Cycle 23/24 explained as a 2σ fluke due to rogue low-latitude ARs:

Jiang et al. (2015)

Theoretical background: Cameron & Schüssler (2015)

Effect of rogue AR larger at low latitudes (as leading flux can then be
cancelled across the equator).
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WHAT MAKES A ROGUE AR?

A bipolar AR contributes δDi =
3

4πR2 Φ d sinα cos λ

δDi is only the initial dipole contribution.
To evaluate final contribution δD f , SFT is needed:

Note that for finite τ, δD will keep decreasing exponentially (dashed)
⇒ here, δD f will be meant without the factor e−t/τ.
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Dependence of δD f on latitude: conflicting “anecdotal evidence”:

Jiang et al. (2014) SFT:

In 2×2D dynamo (Nagy et al. 2017):



K. Petrovay Space Climate 7 – p. 16 of 28

Further experiments in a 1D SFT model:

Gaussian dependence
on AR latitude.

Width: dynamo effectivity range λD.

A: amplitude.

Let’s take a more comprehensive look at this based on an SFT model
grid!
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Flow profile: 3 cases considered

Profile 1: sinusoidal
used e.g. by Dikpati et al. (2006):

uc = u0 sin(2λ)

Profile 2: polar dead zone —used e.g. by Jiang et al. (2011– )

uc =

{
u0 = sin(πλ/λ0) if |λ| < λ0

0 otherwise

Profile 3: 2×2D —used in Lemerle et al. (2017)

uc(R, θ) = u0 erf (V cos λ) erf (sin λ) V = 7
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Any system in the madness? Let Du denote flow divergence on equator:

Nice lineup —any deeper reason?
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The Gaussian latitudinal cutoff in AR dynamo effectivity:

analytical derivation
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Recall initial cond: a pair of flux rings w.Gaussian profile at latitude λ0,
half width σ0 = 6◦, N–S separation δ = 4◦. (Other initial profile will also
soon approach Gaussian by virtue of central limit theorem.)

Needed: transequatorial flux in t → ∞ limit

(= flux that will not cancel on the advective time scale).

Consider low latitude limit (λ, σ � 1 radian):
Cartesian geometry, flow divergence Du = du/dλ ' const.

Analogy: 1D Hubble flow in a vacuum-dominated universe:

exponential expansion.

In Lagrangian (comoving, expanding) frame λ, σ = const. for η = 0.

For η , 0: ηL = f (t) is time dependent in Lagrangian frame: ηL ∝ e−2Dut.
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Self-similar solution of diffusion eq. with this time-dependent η:
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The fraction of flux of one polarity across the equator is
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With σ→ λD, final dipole moment still also depends on flux distribution,
but using the observational constraint B ∼ cos8 θ this free factor
can be constrained, finally resulting in a dynamo effectivity factor

δD f/δDi = A exp−
λ2

0
2λ2

D
/ cos(λ0) with A ∝ 1/λD .
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⇒ solution of the SFT partial diff.eq. can be bypassed and substituted

by an algebraic summation (as done also by Jiang et al. 2019):

Di+1 − Di =

N∑
n=1

f f i,n δDn f f i = (δD f/δDi) e−(ti+1−tn)/τ

Only 3 parameters — no need to worry about the choice of a flow profile!
f f i comes from a 1D SFT model but confirmed in a comparison with the
2D SFT component of the 2×2D dynamo model (Lemerle et al. 2017):
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Problem 1: Parameters Du, η, τ need to be determined.

Petrovay & Talafha (2019): SFT optimization for polar field variation:
pole-reaching flows favor higher η and lower u0, to reproduce

observed sin8 θ field profile.

λD depends on η/Du only, increasing monotonically
⇒ pole-reaching flows will result in higher dynamo effectivity.

⇒ effective flow velocity in polar region is important to pin down!
(e.g. Solar Orbiter, EST...)
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Problem 2: N ∼ 3000 in a cycle — still pretty tedious...

How many ARs do we need to predict the solar dipole moment?

How many ARs do we need to explain the deviation of the solar dipole

moment from the value expected for a cycle of given form and

amplitude?

Possible answers:

(a) Zero [Dasi-Espuig 2010, Cameron et al. 2010] —fails for Cyc.24

(b) Hundreds (Whitbread et al. 2018) — overkill as most of those
can be substituted by their statistical average.

(c) a low number (Jiang et al. 2015, Nagy et al. 2017)

We approach this problem with ARDoR.
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ARDoR IN SOLAR CYCLE PREDICTION

ARDoR = Active Region Degree of Rogueness: f f i (δDi − δDi,RS )

RS refers to “reduced stochasticity”: an AR of the same size, appearing
at the same time and latitude, as observed, but with tilt and separation
substituted by their mean values for the given latitude and flux.

Then, the relative deviation of D at end of cycle from the expected [RS]
value is ∆ =

∑
ARDoR/Di+1,RS .

If ∆ is small, no worries. But what if not ?

Order ARs by decreasing ARDoR and see (in the 2×2D model)
how many are needed to [roughly] reproduce ∆ in those cycles
where ∆ > 0.15
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⇒ 10–20 AR with
the highest ARDoR can

account for > 80 % of
the deviation.
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Lost in the forest! 10–20 is still not “a few”.

Potential way out: reduced stochasticity still
has stochasticity in distribution of fluxes,
latitudes and emergence times (∼ shot noise).

Next goal: address this.

Furthermore: we need a method that works “on the fly”
—cannot wait for the cycle to finish.


