

Challenges and Limitations of the Long-Term Sunspot Number Record

Andrés Muñoz-Jaramillo www.solardynamo.org

Jose M. Vaquero, Victor Sanchez-Carrasco, Ilya Usoskin, Laure Lefevre & the ISSI team

Recording solar cycles

Issue we are trying to address

- The sunspot series is one of the most externally used data products provided by solar physics.
- Users from all backgrounds are not aware of the challenges and limitation of the series:
 - 1. Our disagreement should be seen as inherent uncertainty.
 - 2. There is no clear way for users to grasp the level of observational coverage.
- Subtle shades, areas, and transparencies can go a long way to provide context and valuable information.
- There is currently a community concerted effort to produce better long-term sunspot number series (coming up in 2020).

The challenge of studying the solar cycle

We only have 4 cycles of magnetic observations...

...13 cycles of photographic plates...

...a smattering of drawings...

...and sunspot group counts

Problems and solutions

Problem 1: Our disagreement should be seen as inherent uncertainty

Solution: Combining competing series visually allows users to understand that

Solution: Combining competing series visually allows users to understand that

Problem 2: There is no clear way for users to grasp the level of observational coverage

Finding common ground

Pathfinding chains: Svalgaard & Schatten (2017), Chatzistergos et al. (2017)

Pathfinding chains: Svalgaard & Schatten (2017), Chatzistergos et al. (2017)

Fingerprinting the solar cycle (active day fraction): Usoskin et al. (2016), Willamo et al. (2017)

Looking for the underlying signal (expectation maximization): Dudok de Wit et al. (2017)

Looking for the underlying signal (expectation maximization): Dudok de Wit et al. (2017)

Business or party?

Why not both?

Business or party?

Any resemblance to actual persons, living or dead, or actual events is purely coincidental

Why not both?

- The sunspot series is one of the most externally used data products provided by solar physics.
- Users from all backgrounds are not aware of the challenges and limitation of the series:
 - 1. Our disagreement should be seen as inherent uncertainty.
 - 2. There is no clear way for users to grasp the level of observational coverage.
- Subtle shades, areas, and transparencies can go a long way to provide context and valuable information.
- There is currently a community concerted effort to produce better long-term sunspot number series (coming up in 2020).

merci de m'avoir invité à la gynécologiepérinatalité

